

ACWA Power CSP in sub-Saharan Africa and future in SA

Nandu Bhula CEO Redstone CSP Deputy MD ACWA Power SA **Ryno Lacock** CEO Bokpoort CSP

We develop power and desalination water plants

In over a decade we have become the second largest power & water developer in the GCC region, and a name to contend with internationally.

ACWA Power CSP's in Southern Africa

- 50 MW Parabolic trough
 - 180 loops
 - 658 000 m² of reflective surface
- Dowtherm A as HTF
 - 293 °C 393 °C
- 9.3h Thermal Storage
- Wet cooling
 - Cooling Tower
 - Counter flow, induced draught CT (3 cells)

- 100 MW Power Tower
 - ~12k 20k heliostats
 - 1.13 million m² of reflective surface
- Molten Salt as HTF
 - ~ 298 °C 565 °C
- 12h Thermal Storage
- Dry cooling
 - ACC
 - $\sim 5 \times 4$ cell configuration

Bokpoort CSP – Parabolic Trough Technology with Storage

- Ring-fenced project company effective June 2013
- The site: Bokpoort Farm, 125km south-east of Upington (300 hectare Greenfield)
- Technology: Concentrated solar thermal trough & 1300MWh_t molten salt thermal energy storage (9.3hrs at 50MW)
- Total staff: ±1300 during Construction peak and 61 during Operations
- 20 year PPA with Eskom, through the Garona Substation located next to the site

50 MW Parabolic Trough CSP Plant: Wet Cooled
Thermal Energy Storage = 9.3 hours at 50 MW (Largest in Africa)

- Financial Close and NTP 25th June 2013
- 1st Synchronisation 13th November 2015
- Early Operating Date 6th February 2016
- COD 19th March 2016

Solar Field

- Eight Solar Fields 180 Loops
 - 48 Solar Collector Elements per Loop
 - 8,640 SCEs Installed
- Flabeg Glass Mirrors
 - 241,920 Mirrors
 - 658,000 m² of reflective surface
- SENER Trough Technology
- Schott Heat Collector Elements (25,920)
- HTF Dow Chemical (2,640 tons)

Thermal Energy Storage

- 38,100 Tons of Salt (Potassium and Sodium Nitrate)
- Two Tanks Hot & Cold
 - 40 m Diameter
 - 14 m Height
- Bank Solar Energy during the day and release it at night or as needed

Steam Generation

- Two Trains of Steam Generation
 - Steam Supply 103.6 bar @380ºC (@ Turbine Inlet)
 - Enthalpy 3028.7kJ/kg, Steam Flow 60.0 kg/s
- Siemens Steam Turbine SST-700
 - Single Reheat (HP, LP)
 - Siemens Generator

Site Location

Site Coordinates: Latt. 28°44'26.96"S Long. 21°59'34.88"E

The Technology Landscape – Trends in the CSP industry?

CSP Parabolic Trough

- Proven development and operational track record
- Employs single axis trackers
- "off-the-shelve" designs and systems available
- Higher energy losses/aux requirements in comparison to tower due to extensive solar field piping
- Local content opportunities high
- Lower Uncertainty mature with 30 month delivery

CSP Central Tower

- Can reach much higher temperatures leading to greater efficiency.
- One less energy transfer step as it produces steam directly from Salt (no HTF) maximizing plant efficiency.
- The flat mirrors used in heliostats are cheaper than parabolic trough mirrors
- Can be built over more rough terrain as each heliostat's position is independent to its neighbouring heliostats
- 30 month delivery (technology still maturing but more efficient cost effective)

Redstone CSP – Power Tower Technology with Molten Salt Storage

Redstone CSP – Timeline Expected

- We are nearing financial close on our 100 MW CSP power project (FC planned for 1st Aug)
 - Construction activities is expected to ramp up from Quarter 3 2019
 - The Project will then Operate for a period of 20 years under a PPA with Eskom. .
 - The project is enabled by strategic partnerships with South African co-investors including BEE investor and Ownership in the hands of a Community Trust.

preferred bidder

Performance Expectations based on Noor III CSP

- CSP technology implemented in 23 countries across the globe
- Over 6,000MW in operation

renewable technologies globally

- Over 3,500MW in construction
- Almost 25,000MW planned or in development stages

CSP is expected to record the highest growth amor

South African Renewable Energy IPP Program (REIPPP)

- Started in 2011, the REIPPP is widely recognized as one of the **most successful renewable energy procurement** models in the world.
- Over **5 progressive rounds** of competitive bidding, procuring more than **6,300 MW** of renewable energy capacity across **92 projects**
- Significant progress made ito Tariff Reduction, investments and job creation
- 600 MW of CSP Capacity has been procured. ACWA Power developed and built the 50 MW Bokpoort CSP project in Round 2 and is currently developing the 100 MW Redstone CSP project as part of Round 3.5

Tariff Reduction in % per 100MW procured: **CSP – 45% @ 7.5%/100MW** PV – 80% @ 3.5%/100MW Wind – 55% @ 1.6%/100MW

	BV	/ 1	B	W 2	BV	V 3	BW	/ 3.5	B	N 4	Тс	otal
Technology	Capacity (MW)	No. of projects										
Wind	649	8	559	7	787	7	0	0	1,362	12	3,357	34
Solar PV	627	18	417	9	435	6	0	0	813	12	2,292	45
CSP	150	2	50	1	200	2	200	2	0	0	600	7
Landfill gas	0	0	0	0	18	1	0	0	0	0	18	1
Biomass	0	0	0	0	17	1	0	0	25	1	42	2
Small hydro	0	0	14	2	0	0	0	0	5	1	19	3
Total	1,426	28	1,040	19	1,457	17	200	2	2,205	26	6,328	92

CSP – A look at the Future of CSP in South Africa

Acwa power روز بر الم

- Additional 8GW IRP allocation to Gas/Diesel & no allocation to CSP:
 - Without any sensitivity to primary energy is a risk
 - Though, IRP will make reference to "Proxy" technologies
- Gas/Diesel commodity vulnerable to market dynamics and while CSP overnight capital is still reducing
 - CSP can provide effective hedge against GT's higher overnight capital but certain/predicable and low future costs
- A proposed allocation of capacity to CSP can reduce overall planning risk (move CSP:GT ratio from 1:20 to 1:5)
 - Reference to current overnight capital of Gas to CSP about 1:5
 - Reducing dependency Gas/Diesel (which we don't have)
- Success of Hybrid solutions world wide will change the structure of IRP and offer opportunities for all technologies
- CSP offers huge opportunities for sub-Saharan Africa through **development of local industry** (continental hub for the technology)
 - The technology has high localisation potential
- Key aspects that can further impact the attractiveness of CSP
 - Economies of scale clearly impact bid tariffs (DEWA CSP et al)
 - Reduction of soft costs through de-risking Improved finance terms
 - Extension of PPA terms to align with other Thermal technologies
 - CSP Cost trajectories extremely positive and technology still maturing thus huge opportunities for further least cost planning

CSP Market Size means Localisation Potential

Source: http://www.energy.gov.za/IRP/irp-update-draft-report2018/IRP-Update-2018-Draft-for-Comments.pdf

.... We need to have a long term view on **CSP with Adequate Storage** in SA given capabilities proven by current CSP's in operation:

- 1. Only storable renewable energy with utility scale Peaking and Base Load/Load Following Capability
- 2. Flexibility in dispatch meeting SA demand profile PPAs to be structured to load profile with energy, capacity and ancillary services contracted.
- 3. SA is blessed with an **enviable Solar Resource**
- 4. Short lead times for **quick deployment possibility**
- 5. Maturing technology world-wide with **positive cost reduction trends through greater allocation economies of scale and accelerated learning curves**
- 6. Serves as **effective hedge against fuel commodity prices** while securing cost benefits from a certain CSP learning curve.
- 7. Consideration towards **PPA tenures** equivalent to other thermal plant immediate step change
- 8. Easily partner with other technologies for **Hybrid solutions** leading to real "Least Cost Plan".
- 9. Existing SA manufacturing infrastructure complements CSP
- 10. Potential to increase local content whilst growing local competence and knowledge
- 11. Greater Socio-economic development for **local communities**

Water Management Challenges in a CSP Plant

Hydrocarbon contamination in Steam Cycle

JC Nel Bokpoort CSP

Hydrocarbon contamination in Steam Cycle

CSP operating principle:

- Solar Field: heat up Heat Transfer Fluid (HTF)
 - ~400°C, 15 bar
 - Dowtherm A: synthetic organic HTF (Diphenyl & Biphenyl)
- Steam Generation System (SGS): water -> steam
 - ~400 °C, 16-90 bar

Heat Exchangers in SGS:

- Shell and Tube (Preheater, Evaporator, Superheater, Reheater)
- Reheater:
 - Prone for tube leaks high thermal and pressure gradients
 - hairpin design, counter flow, HTF on Shell side
 - 766 tubes, Ø20mm

Contamination:

- Steam cycle direct leak into steam side of heat exchanger
- Waste water cycle blowdown from steam cycle and condensate to drains

HTF Presence in Steam Cycle

Condition/State of Hydrocarbon molecules in steam:

- Condition of hydrocarbon is temperature and pressure dependent (vapor/drop/emulsion)
- Operating conditions changes throughout cycle, as well as time of day
- Online hydrocarbon analyzer for superheated and reheated steam

Effect on Equipment:

- LP Turbine
 - Droplet formation biggest risk blade damage
- Condenser
 - Oil layer on tubes significantly reduce heat transfer (influences vacuum)
- Instrumentation

Limited options for Removal from cycle:

- Deaerator through insoluble gas stripping
- Blowdown of steam and water (keep density differences in mind)

HTF Presence in Waste Water Cycle

Water Recovery System for Condensate Drains

- Water is blown down (controlled release) from SGS to maintain quality
- Passing drain valves, leaks and inefficient operation also discharges demin water to drains, which flows to waste
- Quenched with clean water to cool down ~40°C
- Should be recovered and reused, however need to take risk of hydrocarbon contamination into account

Effect on Equipment:

- Filtration technology for recovery system
 - SGS blowdown high silica content RO most commonly used
 - Hydrocarbon detrimental to RO membranes
- Destination of recovered water:
 - Water Treatment Plant high risk since issue could impact production
 - Cooling Tower safer option
 - aeration, side stream filtration
 - Impact of additional thermal load since condensate drains

Management of Risk

Risk management:

- In order to repair a tube leak, the complete SGS train needs to be taken out of service
- Significant production loss, could be reduced if planned for during badweather days
- Requires clearly defined allowable limits in order to safely operate plant until best opportunity for repairs

Removal from cycle:

- If leak did occur, how to effectively remove hydrocarbons from cycle to within acceptable limits
- Without wasting unnecessary water through forced flushing or not recovering condensate drains

Je vous remercie Danke mihi koe рақмет сізге Teşekkürler 「 сат оп bạn நன்றி Asante Дякую अओओ Asante Дякую धन्यवाद Thank you Terima kasih Ngiyabonga

Saudi Arabia	Saudi Arabia	UAE
Building 1, Ground Floor, Business Gate Office Complex, Airport Road P.O. Box 22616 Riyadh 11416 T: +966 1 2835555 F: +966 1 2835500	King Abdulaziz Branch Rd, Ash Shati, Jeddah, 23613 T: +966 12 618 9000	The One Tower, 41 st Floor, Barsha Heights, Sheikh Zayed Road, P.O. Box 30582 Dubai T: +971 4 5090555 F: +971 4 3859625
China	Egypt	Jordan
2101 Tower B, Ping An International Financial Center, No. 1-3, Xin Yuan Nan Lu, Chao Yang District, P.O. Box 10027, Beijing T: +86 10 5979 2330 F: +86 10 8438 1078	Plot 176, Second Sector, City Center Giza Systems Building, New Cairo, Cairo T: +202 23 225 500	Amman-Khelda, Al Khalideen Suburb, Al Hakam Bin Amro Street - Bldg No. 22 P.O. Box: 2564 Amman 11953 T: +962 6 534 0008 F: +962 6 535 7210
Morocco	Oman	South Africa
65 Avenue Mehdi Ben Barka, Souissi, Rabat 10100 T: +212537714164 F: +212537714165	South Lobby Roof Top, Grand Mall, P.O.Box: 163, PC: 136, Al Khwair, Muscat T: +968 22065 752 F: +968 22063 753	7th Floor, 90 Grayston Drive, Sandton, Johanesburg, 2196 T: +27 117224100
Spain	Turkey	Vietnam
Empresarios Agrupados Calle Magallanes 3, 28015 Madrid	Barbaros Plaza, Emirhan Caddessi, No.113 Kat.19, Dikilitas, Besiktas Istanbul T: +90 212 259 3396 F: +90 212 259 3397	11th floor, BIDV Tower 194, Tran Quang Khai St., Hoan Kiem District, Hanoi T: +84 43 935 2966 F: +84 43 935 2969