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Abstract

In isolated rural village electrification, renewable energy resources are often the only alternative

to provide sustainable energy to economically deprived isolated rural communities. In support

of current alternative energy system developments, engineers use smart village based computer

model design approaches. This includes desktop computer simulation modelling for renewable en-

ergy systems and smartgrid energy management systems to plan and scope village energy projects

for particular technology configurations. This approach also supports design site component op-

tion appraisals before physical installation at targeted pilot sites. Disaggregated demand load

data from advanced metering infrastructure is however hardly available to assist with the technical

planning and design optimization for planned rural energy systems at remote rural villages. This

means that logical demand load profiles for traditional rural villages have to be computer simu-

lated. In this paper we describe the basic principles around discrete time device disaggregated

rural village electrical load profile simulations suitable for experimentation with smart microgrid

design, economic optimization and critical demand response analysis. The engineering simulation

model incorporates physical appliance energy ratings and device-use behaviour patterns as basis

for synthesising disaggregated archetypal load profiles. The simulated disaggregated load cate-

gory archetypes reflect realistic disaggregated energy consumption patterns for devices in typical

isolated rural villages. Computer generated rural village load time-series datasets are output in

formats suitable for demand load data direct exports and imports into custom or commercial en-

ergy modelling software simulation platforms such as TRNSYS, HomerEnergy, EnergyPlan and
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EnergyPlus. The simulated rural village demand load data can thus be used to validate numeri-

cal simulation models for newly planned smart rural village energy systems, or experimentation

with economic optimization and demand response for multi-priority load control in rural smart

microgrid environments.

Keywords: Smart rural village; Cyber physical systems; Discrete time simulation; Off-grid

energy systems; Demand response; Disaggregated load profile; Rural electrification

1. INTRODUCTION

A substantial proportion of the world’s population lives in geographically isolated rural areas.

Sparsely populated regions are often unable to justify grid infrastructure extensions to their

areas because of the economical distance limit and low economic income potential for centralised

electricity grid infrastructure. While many deprived rural households and villages in such areas

are still without power or electrical grid infrastructure, these disparate communities have an equal

right to equitable access for energy towards economic development [1]. The situation necessitates

the need for the provision of village power to small off-grid rural village communities through a

means other than through utility grid extension [2].

The IEEE smart village concept offers a basis for technology development through ideas aimed

at the design of new grass-roots level micro-utilities able to act as catalyst for rural development.

This smart village approach supports rural village community development in a bottom-up ap-

proach, through sustainable energy system ideas based community shared renewable microgrid

technology [3]. Other development organizations such as the Alliance for Rural Electrification

(ARE) also assists developing countries in efforts to reduce energy poverty. Their support simi-

larly aims at the design and development of cost-effective small-scale renewable energy solutions

able to provide optimal energy performance within the physical and socio-economic reality of

rural areas [4].

In support of such initiatives, engineering modelling and design approaches have been used

in rural electrification planning [5]. Computer aided modelling and design processes has the ad-

vantage that it can determine power generation and microgrid system behaviour for particular

pilot design sites, before the physical systems are rolled out in the field [6]. Modelling design

approaches also use desktop computer simulation models for shared renewable energy systems in
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community microgrid configurations, mainly to optimize and evaluate the suitability of a partic-

ular technology in advance [7]. In the utility power market, technologists also experiment with

dynamic computer engineering models to determine the basic power requirements for smart mi-

crogrid rural electrification [8]. One such study describes a smart microgrid computer simulation

to determine the basic power requirements for electrification of a proposed hybrid off grid pilot

site for 34 rural homes in Southern Africa [5]. Such studies raise awareness of the value of dis-

aggregating the demand load data in model-based energy scenario design studies in support of

more effective electrification planning and operations [9].

In hybrid renewable energy microgrids for off-grid community energy systems, least-cost oper-

ational energy management is a critical success factor in system acceptability [10]. This includes

optimizing the technology selection and size of energy conversion components [11], as well as the

adoption of an appropriate energy management system (EMS) with appropriate control automa-

tion strategies [12]. Microgrid EMS operational optimization is especially important because of

the variability and fluctuations in supply generation from multiple renewable/fuel-based energy

generation/storage systems, which relies on mathematically optimized energy flow control and

load management on a strategic hierarchical control level [13][14]. In this context, disaggregated

load data models are required for proper experimentation with computer modelled microgrid

EMS control systems, especially since the EMS plays a crucial role in smartgrid acceptance for

autonomous off-grid rural energy systems. Disaggregated demand load data further offers a means

for analysing customer load device engagement scenarios aimed at increasing customer satisfac-

tion, thus ultimately helping to improve the value proposition for smart microgrids in remote

rural village energization.

Within this context, the IEEE Smart Village development concept calls for new thinking in

terms of power generation, power distribution and demand side management that would help

ensure sustainable renewable energy access to off-grid communities worldwide [15]. In a renew-

able energy rural smart village context, automated smart microgrid demand response research

specifically requires discrete-time appliance disaggregated demand load data to experiment with

control aspects around sustaining mission critical loads in rural energy systems [16]. Disaggre-

gated demand load data is also required in the optimization of hybrid renewable energy systems

for different technology system configurations in model based design approaches on energy plan-

ning software platform such as TRNSYS, HomerEnergy, EnergyPlan and EnergyPlus [17].
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From a development perspective, demand load data and advanced metering infrastructure to

measure and datalog disaggregated load data in small community microgrids are hardly avail-

able for isolated off-grid rural villages. Utilities, cooperatives and design engineers thus call for

the development of discrete-time appliance disaggregated load simulation models able to trans-

late discrete load management impacts into hour-by-hour changes in archetypal load shapes for

traditional rural family villages. Novel rural village load simulation models should specifically

have the ability to output time-series device disaggregated load data in terms of appliance use by

time increment components for extended planning periods, including different seasons of the year.

Such computer simulated disaggregated rural village datasets will be most valuable in engineer-

ing analysis applications where computational intelligence is used in cyber physical systems, for

example transactive energy management in participatory smartgrid control for solar cogeneration

systems designed for isolated rural villages [18].

This paper describes the development of a discrete-time and device load event disaggregated

rural village electrical load profile simulation that uses load definition models to create logical

time-series load profiles for rural villages. The smart microgrid load simulation model incorpo-

rates physical appliance energy ratings and device use behaviour patterns as basis for simulating

disaggregated archetypal load profiles. The demand load profiles represent realistic and logical

energy consumption patterns for typical small rural villages in formats suitable for import into

various smart microgrid energy modelling and software simulation platforms.

2. RURAL ENERGY CONTEXT

IEEE Smart Village and ARE initiatives generally motivate design engineers to focus on

the design and development of cost-effective small-scale renewable energy solutions that make

effective use of community interaction in providing clean and sustainable energy services to rural

communities [4][19]. They call on engineers to design new rural energy systems able to help

to reduce poverty, based on the premise that the social value of small-scale energy systems

can redefine community values [20]. In this study, we support the goals of the international

initiatives and respond through research on smart microgrid intelligence systems able to support

community demand response requirements (learned from community interaction). The focus of

this section is to introduce the context of the traditional isolated rural African family village as a
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means of demonstrating the need to develop realistic load models for current off-grid rural village

electrification and optimization research [21].

Most traditional rural African villages are located in parts of Africa where the land topogra-

phy are mountainous terrains that over the years caused people to spread out and live in small

homestead clusters or villages on the habitable parts of the hilltops and ridges. These villages are

often located on ancestral tribal land or communal grounds in sparsely populated zones of remote

municipal wards. The photo example in Figure 1 shows the typical rural electrification context

for a small family village (kraal) in Africa, highlighting the technical engineering challenges of

our present research. In these isolated homestead clusters, people typically stay in round indige-

nous huts (sometimes patterned) with thatched roofs in an energy context where the family live

independently from municipal infrastructure.

Figure 1: Photo illustration of a traditional isolated rural African village homestead context seeking off-grid rural

electrification solutions [22].

Inadequate rural grid infrastructure to villages such as in Figure 1 creates special challenges

for local authorities obligated by government regulatory policies to provide Free Basic Energy

(FBE) and Free Basic Alternative Energy (FBAE) services to poor households at lifeline tariff

scales [26]. In this context, free basic electricity is pro-poor energy relief program terminology

that describes the amount of electrical energy deemed to be sufficient to provide basic electricity

services to a poor or disadvantaged household or family village. In general, FBE and FBAE are
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deemed to be sufficient to provide basic entertainment access and lighting in the case of non-grid

connected supply systems (designers can add basic water heating kettle and limited ironing in

cases where new grid electricity would be made available).

With small agricultural based homestead villages dotting the African landscape, many local

authorities and traditional leaders are often challenged in their community and municipal devel-

opment plans to provide freshly pumped water and energy services to these members of their

constituencies [23]. Challenges with equitable Free Basic Services (FBS) to remote (rural) areas

are generally referred to as the service backlogs (water, energy, electricity, sanitation, waste) in

rural and municipal Integrated Development Plans (IDP) [25].

The South African Municipalities Sustainable Energy Transitions (SAMSET) project have

made some efforts to support small scale embedded generation installers to help participating

municipalities overcome these energy service provision challenges [24]. Contractors however found

that, even if grid electricity may be available in remote rural areas, the choice between off-grid

power generation through renewable energy systems (solar cogeneration, photovoltaic systems,

biomass gasifier, etc.) or conventional grid extension for remote village electrification are often

determined by a number of factors. These include the availability of grid infrastructure, the

location economic distance limit, the operating hours of the renewable energy systems, the life

cycle cost of the energy generation equipment, customer engagement issues as well as the micro-

power system business strategy [27].

3. RURAL ENERGY LOAD PROFILE REQUIREMENT

Most clustered isolated rural kraal villages similar to Figure 1 are spread out over wide areas,

making decentralized energy generation through solar renewable energy resources a viable tech-

nology solution. In this context, hybrid solar micro-combined heat and power (systems) are ideal

for providing off-grid family villages with sustainable electrical energy and hot water. For rural

villages with lower load demand (<25 kWh) located beyond the economic distance from an exist-

ing grid line, it has also been shown that hybrid solar and biomass gasification technology systems

could be cost competitive solutions when compared to photovoltaic systems and grid extension

(especially is sub-Saharan areas of Africa where agricultural and forest production residues are

generated) [28].
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Within this application context, Figure 2 highlights the central role of demand load profiles

in the technical design planning and economic optimization of planned rural energy systems for

remote rural villages. Load archetypes and load signatures are embedded in energy consumption

patterns, and can be extracted if sufficient data is available in smart meter datasets in big data

databases. With the appropriate search algorithms and load signature disaggregation frameworks,

metered consumption data normally render valuable information on the nature of the load devices

as well as their associated energy usage patterns [29]. In the case of non-electrified remote rural

villages (Figure 1), very little meaningful statistical data (apart from general household surveys)

is available on the potential daily/hourly energy usage and energy consumption patterns [24]. In

most cases, remote rural communities have been living-off-the-land and have been using fuel-wood

and other forms of fossil energy for decades. Without these households ever having the privilege or

experiencing electricity access, it becomes very difficult to determine/predict post-electrification

energy consumption patterns in the pre-electrification planning time period.

Solar Grid Biogas Natural gas

Cogen model Battery model ICE model Thermal model

Subsystem
constraints

Subsystem
constraints

Subsystem
constraints

Subsystem
constraints

Demand Profiles (electrical, cooling, hot water)

Multi-objective smart microgrid optimization functions

1. Operating cost minimization (fuel cost, start up/shut down cost,

ramp-up/ramp-down, equipment operation and maintenance cost)

2. Distributed renewable energy output maximization

Figure 2: Flow chart of community microgrid optimization model highlighting the importance of reference energy

demand profiles in rural microgrid electrification and economic operations optimization [30].

Since demand load data for isolated rural villages (in the context of Figure 1) are generally not

available, the design optimization and energy management operation planning for new isolated

rural energy systems will have to be performed through means other than with statistical load

profile data analytics. In this respect we will have to rely on simulation techniques to analyse

the behaviour of (low-voltage) smart microgrids using a customer behavioural based load profile
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generator [31]. For this purpose, Figure 3 shows a digitized software load profile definition window

screen to emulate/synthesise (non-disaggregated) load profiles on a typical energy system mod-

elling platform [32]. With this load definition formulation facility (for non-disaggregated loads),

the Homer Energy analysis and simulation platform allows the design engineer to input an hourly

time-series power consumption profile data in order to match renewable energy generation to the

required load profile shape [33]. Important to note in Figure 3 is the discrete time format used to

define the device disaggregated demand load data as discrete time series for a particular target

day (in this case the household/village load profile is defined in terms of energy levels per hourly

timeslots).

Figure 3: Example of non-disaggregated load profile definition screen for the Homer Energy load synthesis and

operations simulation software platform [32].

From a load profile definition perspective, our interest is primarily in disaggregated load

data. The aim with such data is to experiment with automated smart microgrid demand re-

sponse, especially to study the ability to sustain mission critical loads in remote rural villages

within the context of Figure 1. Demand response is an extremely important issue in off-grid and

grid-connected solar renewable energy research, such that the Smart Electric Power Association

(SEPA) and the Association for Demand Response and Smart Grid (ADS) have joined forces

to tackle this challenge more effectively [34]. While most energy simulation platforms (such as

Homer Energy) allow design engineers to define numeric consumption outputs by creating hourly
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power consumption profiles (as a means to match load demand to renewable energy generation),

few load simulator platforms have the capability to define and generate appliance disaggregated

time-series demand load consumption data for non-electrified traditional rural villages.

It was thus essential to develop simulation tools able to simulate realistic disaggregated load

profile data for traditional rural villages. The simulation must export the demand load data

in formats suitable for import into platforms such as Homer, TRNSYS, EnergyPlus, Matlab,

Python, Opal-RT, NePlan, etc. Such demand load data will further enable us to predict how

the obligated free basic electricity would be used in an isolated rural family village and how to

optimize renewable energy systems to meet the predicted power demand on an hour-by-hour ba-

sis. These goals form part of our broader research goals, which is to assist local governments and

municipalities to make the free basic electricity available to isolated off-grid rural village com-

munities through shared community solar and autonomous smart microgrid energy distribution

technologies [26].

Within this context, our main interest in this paper is thus on understanding rural village

energy needs and to follow this up with the development of a rural demand load simulation

focussed on determining simulated archetype load profiles for isolated rural villages. With such

background knowledge and simulation model, relevant and realistic demand load profiles can be

used in evaluating how energy technology would be able to match up or synchronize with timing

of the daily and hourly demand patterns for an agricultural type homestead village (or kraal in a

remote African region, where electricity have never been available before). Secondly, our research

strategy include plans to implement multi-priority demand response and load curtailment in a

smart microgrid environment. This means that our requirement is not only to generate simple

amplitude based discrete time-series load profiles (shown in Figure 3), but to develop and extended

load model that can generate appliance disaggregated time-series load profiles for traditional

family size rural villages (Figure 1 context).

4. RURAL ENERGY NEEDS

In the context of understanding rural energy needs and rural village energy usage in load

profiling, literature surveys around typical fuel types and fuelwood collection prove to be valuable

in terms of understanding energy needs in the traditional rural energy context. To understand
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what future changes can be expected after electrification, one can compare the simulated demand

load figures from a simulation model with daily energy consumption patterns from traditional

fossil fuel collection and usage in rural areas in recently electrified rural villages [35].

The IEA estimates that the energy consumption per capita for rural households are typically

between 50 to 100 kWh per year [2]. The report estimates that an annual consumption of 50 kWh

per person for a five person household could be sufficient to, for example, operate two compact

fluorescent light bulbs, a small battery charger and a cooling fan to run for about five hours per

day. With the use of LED lighting and other energy efficient appliances, the electricity saved can

be stored or applied elsewhere. The level of energy requirement may vary depending on income

levels in rural areas, but it seems at least that there is consensus on the minimum amount of

energy required [2].

For the Southern African Region, appliance ownership and usage of electrical appliances are

taken from a study by Thom (2000). Table 1 lists the percentage of households that own certain

appliances versus the percentages using these appliances frequently. This table is compiled from

information published on the use of electricity by recently grid electrified rural households in

South Africa [36]. It includes the ownership and usage of appliances such as a hotplate, a kettle,

an ironing iron, and one or more refrigerators, radios, televisions and hi-fi systems.

Table 1: Appliance ownership for recently grid electrified households in rural Loskop, South Africa [36].

Service % owning appliance % using appliance

Lighting 100% 94%

Radio/hi-fi 84% 77%

Ironing 65% 61%

Television 52% 42%

Refrigeration 48% 48%

Water heating (kettle) 45% 32%

Cooking (hot plate) 45% 29%

Space heater 16% 3%

Table 1 further shows that low power lighting and entertainment electronics such a television,

hi-fi systems and radios were amongst the most popular items owned and used with the intro-

duction of electricity. Appliances such as kettles and fridges are further down the list, while high

energy intensity appliances such as hot plate stoves and space heaters are of least importance and

are least used even if they are present in the house. The study discovered discrepancies between
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electrical appliance ownership and electrical appliance use. This was noticed in the variation in

frequency of use of household appliances. In comparing the column data in Table 1, it shows that

in many cases the villagers do not use the appliances on a regular basis, even though they may

own the appliance [36].

In terms of rural household energy consumption, it seems that the present perception in

many newly grid-electrified rural areas is that electricity may be overly expensive for cooking,

water heating and space heating (thermal energy needs) [39]. Appliance use patterns may thus be

influenced by these same cost perceptions, especially in a context of newly electrified homes. These

perceptions have likely been formed by pay-as-you-go type pre-paid meters that allow people in

newly electrified homesteads to either monitor electricity token purchases or to visually monitor

their electricity meters [39]. Such meters conveniently show direct electricity consumption and

cost expenses in real time during usage on the distribution board in the house. This may be the

reason why many users from a significant percentage of newly and existing electrified households

in rural villages still continue to use more traditional fuels, such as biomass and paraffin for

cooking, and candles for lighting [40][41].

Figure 4 shows the results of a 2013 study by the South African Department of Energy on the

energy related behaviour and perceptions in South Africa. It was found that only one fifth of low

income households are making use of electricity. For the rest, energy need were predominantly

met through candles, firewood, paraffin and dry cell batteries [42]. To a large extent, this type of

”fuel stacking” occurred in the medium income bracket, where 94% of households were using their

access to electricity. The fuel stacking phenomenon is well documented and have been reported

in many studies of rural and low income households [43][44]. The study also found that, for newly

electrified low income households, electricity was mostly used to run appliances such as, lighting,

radios, TV’s and refrigerators. A very small amount of these households (7%) used electricity for

cooking, while firewood (51%) and paraffin (38%) were other the dominant energy sources [42].

A survey conducted by Lloyd and Cowan (2004) in Khayelitsha (South Africa) provides im-

portant cues on the average levels of electricity consumption per month and per day. Their survey

summary in Table 2 shows that the monthly energy consumption level for a rural household not

cooking with electricity is around 150 kWh per month, while the energy consumption for elec-

tricity cooking households average around 210 kWh per household per month [44].
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Figure 4: Rural African energy fuel source use by purpose and living standard levels [42].

Table 2: Monthly use of electricity and paraffin at homesteads in the Khayelitsha human settlement [44].

Homestead Type Paraffin Electricity

N Median Median

Households cooking with electricity 124 6 litres 210 kWh

Households not cooking with electricity 102 18 litres 150 kWh

Another interesting result from the study of Lloyd and Cowan (2004) is that many houses

have access to electricity, but also used paraffin for cooking (fuel stacking). This confirm the

findings of previous studies, showing that a significant percentage of newly electrified households

continue to use alternative fuels [43]. In Khayelitsha, approximately 68% of households with a

regular metered supply of electricity used electric stoves as main cooking appliance and the rest

typically used paraffin stoves. Among non-electrified households, it was found that 92% of the

households used paraffin stoves as main cooking appliance and the rest mainly used LPG gas.

A special observation should be made on battery operated devices, and they have need for

charging of such batteries. Many battery-operated radios and modern day cellular mobile tele-

phones require regular charging. This in itself has become an entrepreneurial opportunity for

energy business micro-enterprises in rural areas [45][46]. Modern community energy solutions

and local enterprise studies have shown an expected increase in the percentage of ownership
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of cellular telephones once electricity becomes available in their areas [47]. In one project in

South Africa, the iShack project at the Sustainability Institute at Stellenbosch University, an

entrepreneurial model was developed for incrementally upgrading informal settlements [43]. Such

projects illustrated the potential for enterprise development as a result of rural electrification, an

aspect that could potentially impact on the demand profile for a rural power system [48].

In terms of the sustainability of rural electrification, evidence from the above South African

research on the effects of access to electricity in newly electrified houses have shown that the energy

transition in rural households are largely driven by income levels [37]. Take note that most rural

households are reported to be of low income status. The energy transition is also highlighted

in the outcome of the Eastern Cape study through the proportional growth in electricity usage

(relative to traditional fuel use) following a few years into the electrification process [38].

Drawing from experience gained in a rural African village energy profile scoping exercise, along

with the information on potential energy usage discussed in this section, we are able to form an

idea of the load profiles for rural and low income households. The next section combines this

information with user behaviour patterns in a rural village to simulate realistic load profiles for

targeted rural villages that may become eligible for future consideration in rural electrification

plans.

5. VILLAGE LOAD SIMULATION

While shared solar power is an attractive energy resource to fuel village power and commu-

nity microgrid systems, the challenge is that solar radiation patterns, weather patterns and the

performance of solar energy conversion technologies vary from location-to-location. Model based

design and desktop computer simulation models of particular solar renewable energy system con-

figurations are therefore used to plan and scope village electrification projects around a particular

design site and technology system. Since advanced metering infrastructure and load data are not

always available to assist design engineers with the technical design planning and optimization

of planned rural energy systems for remote rural villages, logical rural village load profiles have

to be simulated.

In this section we describe the basic principles around discrete time disaggregated rural vil-

lage electrical load profile simulations to support rural smart microgrid research. The simulation
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incorporates physical appliance energy levels and device use behaviour patterns as basis for sim-

ulating disaggregated archetypal load profiles that would represent realistic disaggregated energy

consumption patterns for a typical isolated rural village. The proposed simulation outputs nor-

mal text and .csv format data, meaning the simulated load profiles can be imported directly into

a range of software modelling and simulation platforms (ie TRNSYS, HOMER, EnergyPlan).

In this way, the simulation data can be used to validate numerical simulation models for newly

developed renewable energy systems. The output datasets further offer the opportunity to ex-

periment with economic optimization and demand response in a multi-priority controllable load

smart microgrid environment.

5.1. Village Load Simulation Approach

Prior research have been conducted on a statistical load profile prediction model for new

residential consumers in South Africa as part of the development of a suite of electrical distri-

bution pre-electrification software tools [8]. However, most of the isolated isolated rural African

communities in our study focus (in the context of the illustration in Figure 1) have traditionally

been dependent on subsistence farming in a pastoral lifestyle. From an energy profile perspective,

most of these villages are still primarily involved in agricultural activities, meaning these villages

will have its own unique set of energy profile patterns (village community behavioural patterns).

Remote rural village load profile patterns could thus differ substantially from the statistically

determined load profile patterns for urban and township electrification projects [8]. This makes

it difficult to use statistically trained or Markov model trained smart village and smart home

pre-electrification load planning tools [49]. The same goes for load profiles developed in collabo-

ration with national grid utilities as decision support tools, these profiles being aimed at building

energy load profiles prior to grid electrification for which metering data should be available [50].

Before the advent of big data and data analytics, the bottom-up approach to residential load

modelling was developed by utility engineers to plan for urban microgrid developments. In this

bottom-up approach, a model for domestic electric end-use was determined by establishing the

load diagram of an area through a process of synthesis [51]. This modelling approach, started from

knowledge around rural village socio-economic and demographic characteristics, unitary energy

consumption and the load profiles of individual household appliances. Probability functions

was also introduced in order to cover the close relationship existing between the demand of
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residential customers and the psychological and behavioural factors typical of the rural household.

With these models, computer simulations of an electric load shape can also be determined as

a time-series through electric load curve simulation or synthesis techniques [52]. This can be

supplemented with a high-resolution domestic occupancy model able to make the energy demand

simulations more realistic [53].

From a rural reference load profile perspective, we can define discrete time load profile lev-

els for individual appliances based on simulations that operate on appliance power ratings and

behavioural analysis/synthesis. In our research, simulating reference archetype energy profiles

for a rural homestead or village is not only to define the average daily level or the energy con-

sumption requirements for the rural settlement, but also to define realistic disaggregated electrical

load profile reference patterns. Discrete digitized appliance and time disaggregated load data for

rural villages is an extremely important requirement in our research since it is required to sustain

mission critical loads using demand response and multi-priority load curtailment, mechanisms

to compensate for the variability in renewable energy and solar resources in autonomous power

systems.

The challenge is that few simulation platforms allow for the load profile to be determined

in terms of disaggregated data principles. Within this context, the aim is to simulate realistic

disaggregated digital electrical load profile reference patterns that could be used in demand

response and critical load analysis for off-grid village community solar project research. The first

sub-section describes the load simulation Appliance Rating Inputs, the Behaviour Pattern Inputs,

followed by the Village Load Simulation Model. The experimental section of this paper shows the

simulated discrete time disaggregated load profiles for a typical rural village.

5.2. Village Load Appliance Rating Inputs

Appliance rating parameters are required for the load simulation experiment. These pa-

rameters should include the appliance configuration definitions and the appliance power rating

specifications. Exemplary appliance profile and rating parameters are specified in Table 3. It

shows a list of an anticipated collection of appliances that may typically be used in a newly elec-

trified rural family village. The table also lists the power rating for each appliance device. This

input table represents the appliance definitions for any number and type of appliances that the

design engineer can define and program into the simulation model configuration. In the example
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of Table 3, the village cluster includes a cluster of five households in the village, each equipped

with outdoor security lighting (1 per house), indoor LED lighting (3 per house), radio receiver

sets (1 per house), cellular mobile battery chargers (3 per house), television sets (1 per house) and

shared refrigerators (2 per village) running as normal intermittent or user behavioural pattern

loads.

Table 3: Electrical appliance definitions and average usage for a small newly electrified rural village.

Rural village daily energy load

Load Type #/Village Individual load [W] Hours/day Load/day

Indoor LED lighting 15 9 9 1215

Security lighting 5 9 12 540

Radio sets 5 4 16 320

Mobile/cell charger 15 4 5 300

Television 5 20 6 600

Refrigerator 2 40 10 1000

... ... ... ... ...

Daily Total 3.98 kWh

The load simulation model allows design engineers the option to define arbitrary combinations

of appliances together with power consumption ratings for appliance in the targeted rural village

design. The next sub-section describes how this average estimated daily energy consumption level

can be disaggregated further in terms of discrete time events or (hourly) time-slots in which each

appliance will draw energy from the village community microgrid on a daily basis.

5.3. Village Load simulation Behaviour Pattern

Another input parameter for the load simulation model is the appliance use behaviour. This

parameter defines when and how much energy each appliance draws from the community mi-

crogrid as a digitized time-series. The simulation model uses the schedule defined in Table 4 to

disaggregate energy usage into equipment or appliance loads for any rural village homestead into

a certain discrete time events of any desired time resolution. The disaggregated time resolution

in Table 4 is configured in time steps of discrete hourly events, but is should be understood that

this resolution is variable and can be set between one hour down to five minute time steps.

In the example of Table 4, the estimated time of engagement for a number of appliances

per household is shown in hourly time-slot increments. The indoor lights, for example, are
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Table 4: Anticipated hourly electrical appliance usage patterns for a typical rural village appliance set.

Time Indoor

lights

Security

lights

Radio

sets

Mobile

charger

TV Fridge ... House Village

01:00 1 ... 9.0 45.0

02:00 1 1 ... 9.0 45.0

03:00 1 ... 9.0 45.0

04:00 1 1 ... 18.0 90.0

05:00 2 1 1 2 ... 43.5 217.5

06:00 2 1 1 1 ... 46.5 232.5

07:00 1 1 1 1 1 ... 82.5 412.5

08:00 1 1 ... 20.5 102.5

09:00 1 1 ... 16.5 82.5

10:00 1 ... 9.5 47.5

11:00 1 1 ... 17.5 87.5

12:00 1 1 ... 9.5 47.5

13:00 1 1 ... 17.5 87.5

14:00 1 ... 9.5 47.5

15:00 1 1 ... 8.5 42.5

16:00 1 1 ... 10.5 52.5

17:00 1 1 ... 8.5 42.5

18:00 2 1 1 ... 18.5 92.5

19:00 3 1 1 1 2 ... 88.5 442.5

20:00 3 1 1 3 1 1 ... 97.5 487.5

21:00 3 1 3 1 2 ... 97.0 485.0

22:00 2 1 1 1 1 ... 80.0 400.0

23:00 1 1 ... 17.0 85.0

24:00 1 ... 9.0 45.0

Total 0.239

(kWhe)

1193.55

(kWhe)

represented by the second column of Table 4. It shows that one of the indoor lights are switched

on at 04:00, a second is switched on between 05:00 and 06:00, while three indoor lights are being

used between the hours 19:00 to 21:00. This same appliance use schedule can be defined for the

rest of the appliances, configuration information about the total daily expected electricity usage

for each appliance (row: ”Total”), each house (column: ”House”) and the amount used by a

village (column: ”Village”).

This predefined rural household appliance load behaviour pattern input dataset is an impor-

tant component in a bottom-up method of building an appliance disaggregated daily energy use

profile in terms. It reflects major appliance activity and user behaviour spread throughout the

day. The behaviour input parameters in Table 4 allow the designer to define spesific time interval

periods during which arbitrary appliance devices my be drawing energy form the community

microgrid. Keep in mind that the time resolution can be defined from 1 hour down to 5 minute

time intervals. The load simulation translates these behaviour parameters into a discrete time-
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series that specify how much energy will be required or consumed by the load devices during each

discrete time slot. It puts energy use in a time perspective for the designer and enables him to

define correlations between household activities with physical energy use in a time-line of any

reasonably desired resolution.

By using the proposed predefined household appliance usage and behaviour pattern time table

data in a simulation technique, the appliance loads for each household can be artificially compiled

from the potential energy time-of-use breakdown analysis in the behaviour pattern time table.

The load simulation can thus define realistic hourly reference load profile for a rural homestead by

using the user/appliance behaviour pattern in a load simulation described in the next sub-section.

5.4. Village Load Simulation Model

In the previous two sub-sections, it was shown how the appliance power rating and estimated

time-of-use parameters can be used to define the daily energy requirements for a typical rural

African village. The appliance rating parameters together with the appliance energy draw be-

havioural pattern parameters form the basis for simulating appliance disaggregated discrete time

sequence load data or time-series load profiles. In this sub-section, the appliance definition inputs,

appliance rating inputs and the behavioural pattern inputs are used in a numerical load profile

simulation to define realistic disaggregated load profiles for formats suitable for rural village power

planning processes.

The functional elements and building blocks that constitute the simulation model is shown

in the block diagram of Figure 5. The Demand Load simulation block receives appliance power

rating and estimated time-of-use parameter inputs from the design engineer definition inputs.

From these inputs, the demand simulation model is able to generate discrete time appliance

disaggregated demand load data for the predefined households in formats suitable for use in

energy simulation and planning software.

The rural village load profile simulation model of Fig. 5 use the appliance power ratings in

Table 3 together with the appliance and user behaviour in Table 4 to map the hour-by-hour

contributions of the appliances onto the rural village load shape. In this way, an appliance

(dis)aggregated load profile for a rural village can be defined by way of synthetically engaging

individual appliances over a 24 hour period for one or more households in the village. It thus

organizes the time-stamped disaggregated load samples into day-ahead tagged time-steps and
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Figure 5: Flow diagram and parameter inputs towards disaggregated rural village load simulations.

load priority groups or layers. This synthesis principle is accrued for all of the appliances in

the configuration definition list. In this way, the load simulation define realistic (dis)aggregated

hourly reference load profile for a rural homestead by using the synthetic cumulation strategy

based on the calculation defined in Equation 1:

pe(t) =

N∑
i=1

ai(t) × ri × δt (1)

where:

pe(t) = total electrical power use at time t [Watt]

ai(t) = number of ith appliances on at time t

ri = ith appliance electrical power rating (individual load) [Watt]

N = number of appliances in the household configuration definition

δt = simulation time resolution [0.1 · · · 1 hours]

t = time of day [i.e. 1 · · · 24 hours]

The computer simulation model thus simulate or ”predict” the microgrid archetype load shape

based upon the principles of disaggregation of the load shape. It disaggregated the load shape

into different appliance components and user behavioural patterns. The hourly time-series load

simulation method thus determines the geometric load profile shape by way of synthetically

engaging appliances in hourly time-slots over a 24 hour time sequence.

Variations in the village size can be modelled as an energy magnitude variation. This means

scaling the load profile energy magnitude based upon the average daily load for a village cluster

consisting of one or more homesteads. A scaling factor is incorporated in the simulation to allow
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the design engineer the freedom to change the magnitude of the rural village load profile dataset

by a factor of any real value. This scaling factor can also be used in a load size sensitivity analysis,

for example to change the power units from Watt to kilo-Watt. Where the village size changes

in a small rural microgrid, the magnitude of the energy consumption pattern may be scaled or

adjusted in relation to the number of households connected to a rural microgrid. A scale factor

disregards the potential distribution losses, a fair assumption given that the houses in a rural

family village is typically in close approximation to the each other and the power generator.

5.5. Village Load Variability Modulator

User behaviour and presence changes may further affect the daily, monthly and annual peak

load. This can be modelled as random variability in device disaggregated load profile and ap-

pliance usage. The solution is to incorporate a load pattern modulator into the load profile

simulation block, as shown in Figure 6. In this way the load simulation offers the option to add

random white-noise, heat degree-day or climatic weather data variability to the usage behaviour

patterns for the individual appliances, in order to make the disaggregated demand load data more

realistic. The load pattern modulation can also incorporate an occupancy modulation mode that

would enable the simulation to modulate presence features onto the daily load profile patterns in

order to create a demand load database for one or more full years.
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Figure 6: Rural village load simulation with variable appliance and behaviour pattern modulator to make village

disaggregated load profile more realistic.
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Fig. 6 shows the extended block diagram for demand load simulation model. The diagram

includes options for appliance type variations amongst village homes, for which the model incor-

porates household differentiated appliance definitions. This feature enable the design engineer

to define different appliance sets for one or more individual homesteads in the village. Secondly,

the model shows the proposed load pattern modulator to add random variability (i.e. gausian

distributed noise, temperature variability, etc.) to help make the disaggregated load profiles more

realistic. The load pattern modulator in the block diagram modulator further incorporates a do-

mestic occupancy mode to make the annual load simulation dataset more realistic [53]. In this

mode, the demand load simulation concept is able to model the long-term presence behaviour of

the occupants (based upon occupancy variations), thus creating an even more realistic predicted

disaggregated load repository with synthetic load data curves for every day of the year.

Most energy simulation software platforms (Homer, TRNSYS, Simulink, EnergyPlan and

Energy Plus) can also read plain text or .csv format load data from an import window. The

rural village load profile simulation of Fig. 5 export the demand load datasets to a plain text

or .csv format time series data file. The output file contain columns of numbers, one line for

every simulation time step, with header lines and time stamps for each line. This means that

rural village load profile benchmark models or benchmark load profiles can be created for any

design day or for any extended period of time. Such benchmark time-series load models can

be simulated according to the principles described above and uploaded onto software simulation

platforms through system dataset import menus.

6. SIMULATION RESULTS

The NREL approach to rural electrification is an integrated, multidisciplinary and multi-

functional approach that include applications development, options analysis and analytical mod-

elling as part of pilot project development and program implementation [54]. This dynamic en-

gineering computer modelling approach requires demand side load profiles to study rural energy

options analyses. The details for such implementations are generally described by documentary

guidelines compiled by the US National Renewable Energy Laboratory (NREL) village power

program (ViPOR) [55]. The challenge of determining new load profiles for planned small family

size rural village electrification projects can be overcome by simulating reference electrical and
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thermal load profiles for experimental research projects.

Anticipated load profiles for isolated rural communities, as potential customers to rural electri-

fication, remains a critical resource in the design process. This data is required for the optimiza-

tion of renewable energy systems in different technology system configurations. In terms of the

NREL model, anticipated rural village load profiles are needed in modelling design approaches,

where it enables a designer to plan around the village energy needs. This section therefore demon-

strates the use of a dynamic demand load simulation model to define disaggregated load profiles

for isolated remote rural villages.

6.1. Rural Village Load: Summer Season

In this experiment we use the rural village appliance set and appliance power ratings defined

in Table 3 as basis for determining a typical disaggregated summertime load pattern for a rural

village through load simulation. These input parameters represent the estimated time of engage-

ment for each appliance per household in hourly time-slot increments. The simulation use this

input data to compute the load profile for all of the appliances according to the method described

earlier in this paper.

The simulation results for the characteristic appliance/user behaviour in summertime is graph-

ically presented in the time-series interval energy data representation of Figure 7. In this demand

load graph, the colour bars in each of the individual discrete time (hourly) segments represent

the appliance load activity for that particular time-slot. The simulated disaggregated load profile

offers a logical and realistic reference archetype energy profile for a rural homestead that can be

scaled to represent one or more homes in the rural village. The disaggregated energy-use profile

representation in Figure 7 essentially provides important information on how energy is used in

the village. It thus shows how the reference daily electricity device loads defined in Table 3 is

spread out over a full day 24 hour period in an accordance with the proposed hourly rural load

emulation definition.

Since the digitized load profile emulation in Figure 7 shows the amount of electricity used in

each time slot per appliance type, it can be observed that indoor lighting, cellphone charging and

television usage is mainly limited to the mornings and evenings when inhabitants are at home.

The simulated load profile results for the case study in Figure 7 further shows that the load

simulation defines peak loads in the morning from around 05:00 to 07:00 and again in the evening
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Figure 7: Summertime rural energy load profile archetype for computer modelling experimentation.

around 19:00 to 22:00, with very small amount of electricity used during the sunlight hours of

the day. This simulated load profile with its characteristic early morning and evening peaks

highlights the importance of energy storage to ensure reliable power day and night in community

solar projects (through load shifting, battery backup and solar storage) [56]. It also highlights

the importance of load profile characterisation in renewable energy efficiency management, since

most energy in the rural village is consumed outside of peak sunlight power generation hours

(around noon).

The simulated time-series demand load graph in Figure 7 offers a summertime scaled computer

modelling dataset version for the determined hourly load profile in text or .csv excel format

suitable for import into computer software simulation platforms such as TRNSYS, HomerEnergy,

EnergyPlus, EnergyPlan, Python Developer, Matlab Simulink, etc. The simulated energy load

patterns is also in a format suitable for use in optimal energy management schemes, which

typically require such load profiles in the constraint and objective functions of multi-objective

optimization for rural microgrid systems [30].

6.2. Rural Village Load: Winter Season

Seasonal variations in the daily load profiles is an important consideration in rural electrifica-

tion since it will ultimately effect the energy generation and distribution control strategy. Thus,

the load profile model should make provision for realistic loads for all seasons and for any number
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of rural households connected to the microgrid. For this reason, the simulation study is also in-

terested in characterising changes in the shape of the daily load profile during seasonal variations.

It means that we need to derive realistic load profile shape variations in terms of broad seasonal

or monthly variations.

To accommodate seasonal variations, it is possible to once-again use the load simulation to

synthesise or determine the anticipated rural village load variations in terms of load shape changes.

We can thus follow the same procedure as we did in the previous section to define the simulation

input parameters for the wintertime by selecting realistic times of engagement for the various

appliances.

The seasonal effects of winter, such as temperature drops with shorter daylight time, can be

better observed in Figure 8. Comparing the summer and winter emulation results, we see that

apart from more electricity being used in the winter there is also some difference in the timing of

the load profile peaks. The winter load profile starts its rise earlier and has a very wide evening

peak, compared to the summer loads peaks which are sharper and more abrupt.
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Figure 8: Wintertime rural energy load profile archetype reference for computer modelling experimentation.

The simulated discrete time-series graph in Figure 8 once-again offers a scaled computer

modelling dataset version for the determined winter season hourly load profile in a format suitable

for use in computer software simulation platforms (ie on TRNSYS, HomerEnergy, EnergyPlus,

EnergyPlan, Python Developer, Matlab Simulink, etc.).
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6.3. Rural Village: Inter-Seasonal Transitions

The discrete load simulation creates a full year of load data by using the summertime and

wintertime daily load curves as anchor profiles and interpolating the inter-seasonal daily load

profiles in-between. Figure 9 shows a comprehensive 3D plot of the interpolated seasonal changes

of the load profile in the transition from summertime to wintertime. This illustration is based

on a southern hemisphere time scale and shows the monthly averages for the hourly load profiles

stacked behind each other for a period of one year (disaggregated load components not shown in

the 3D plot as it would complicate the view). This 3D graph makes it possible to compare the

average daily and inter-seasonal loads and allows us to compare the seasonal load profile charac-

teristics (i.e. peak load times, peak load magnitude variations, etc.). The simulated disaggregated

daily archetypal load profile models for a rural village from summertime through to wintertime

in Figure 9 can be used to validate and compare mathematical and computer simulation models

for storage and control automation solutions in rural energy and community micogrid systems.
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Figure 9: Reference rural village hourly electricity profiles for 12 months of year, Southern Hemisphere.

The demand load pattern simulation model is used to simulate the anticipated load profiles

for any proposed rural village energy usage data in a disaggregated manner as illustrated in

Figure 9. Predicted annual demand load profiles, used jointly with yearly forecasted weather
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pattern data [57], are valuable parameters in the validation and multi-objective optimization of

rural smart microgrid systems [30]. This simulation can thus help design engineers to define

appliance collection and incorporate any arbitrary energy use habits in order for the simulation

to convert these habits into daily energy usage or appliance loads for each homestead or rural

village.

Finally, in is important to know how the daily-average of the simulated load profiles compare

with the anticipated load figures estimated in terms of fossil fuel consumption. From the user

definable household appliance and appliance rating configurations, the estimated daily electricity

usage per homestead or village can also be computed by the simulation. In the present case study

example, the simulation estimates that the total daily electricity consumption for the sample five

household village would be around 3.98 kWh per day. This equates to a renewable energy supply

requirement of around 1452.7 kWhe per year. The combined estimated daily village electrical

load of 3.98 kWh represents the total estimated daily power load for a single isolated hypothetical

newly electrified off-grid rural village. Say this defined rural village of five households include

seven people per house, then the average daily load should equate to around 0.796 kWh per

household or around 0.113 kWhe per person per day (24 hours). These rural village load figures

correlate well with the rural household and village power requirement estimates of the IEA and

other sources discussed in Section 3 of this paper [2].

7. CONCLUSION

Appliance and time disaggregated load data is a mandatory important requirement for rural

village electrification research since load data is the anchor to system optimization and operational

efficiency assurance in current alternative energy systems. It is required in smart microgrid

research aimed at sustaining mission critical loads and energy security, for example using demand

response and multi-priority load curtailment as mechanisms to compensate for the variability in

renewable energy and solar resources in smart microgrids. In this modern age of 21st century

energy informatics, it still proves difficult to find digitised disaggregated time-series energy profile

shapes for a a small typical indigenous rural village. This means that logical village load profiles

have to be determined in a statistical or logical manner through computer simulations. Within

this context, the aim of this paper is to describe a logical demand load simulation model that is
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able to define realistic disaggregated electrical load profile reference patterns for planned off-grid

community solar project research projects.

The computer aided load simulation model was developed to help validate and compare math-

ematical and computer simulation models for smart microgrid storage and control automation

solutions for energy system simulation models on computer simulation platforms. The discrete

load simulations described and determined in this paper is valuable for future smart micro-

grid demand response research, especially where developmental researchers require archetypical

type information about the geometry and disaggregated load characteristics of a rural home-

stead village energy consumption profile. These isolated rural village load profiles offer a basis

for studying control automation and demand response in multi-priority controllable loads in a

community microgrid environment. The simulated load representations will further be used in

rural electrification planning and simulation experiments where software modelling platforms (ie

TRNSYS, HOMER, EnergyPlan, Matlab, Simulink, Python, Opal-RT, NePlan, etc.) are used to

scope and validate computer models for renewable energy and smart microgrid systems aimed at

specific remote rural target sites.
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