

The design and construction of an open volumetric air receiver for the STERG test facility

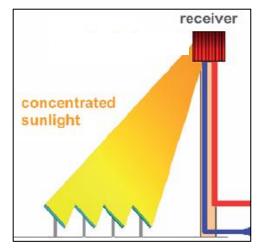
JC Nel

MEng candidate (1st year)

Supervisors: Prof F Dinter, Prof TW von Backström

Solar Thermal Energy Research Group (STERG), University of Stellenbosch

- 1. Research Proposal
- 2. Motivation
- 3. Open Volumetric Air Receiver (OVAR)
- 4. SA CSP Industry
- 5. Conclusion


1. Research Proposal

Topic

- Central receiver power plant
- Design of an air receiver for the STERG test facility
 - Simple and low cost design
 - Use local content and manufacturing
 - Supply hot air to a thermal energy storage system

2. Motivation

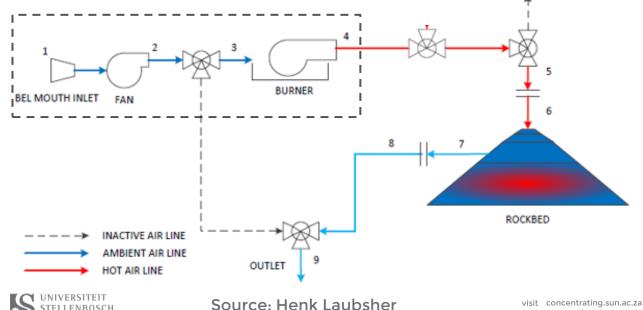
Types of air receivers

Open	Closed	Hybrid
Ambient air	Compressed air	Both
New receiver	 Spiky Central Receiver Air Pre- heater (SCRAP) M. Lubkoll 	 Hybrid Pressurized Air Receiver (HPAR) H. Kretzschmar L. Heller

2. Motivation STERG test facility

- TIA Helio100 project is a central receiver technology development project
- 100kW pilot facility
- Under construction: rock-bed thermal storage system

© Helio100



2. Motivation

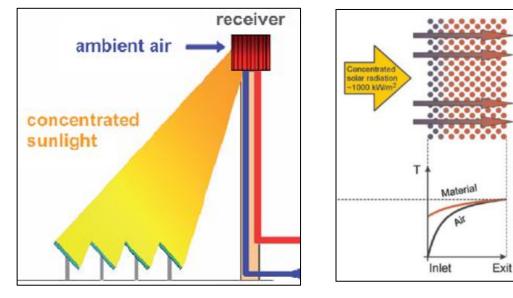
Rock-bed storage

• Gas combustor designed to be retro-fitted with an air receiver

 $\langle \rangle$

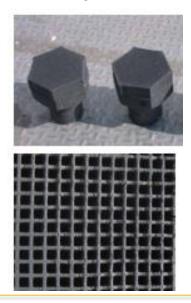
sterg@sun.ac.za

contact


3. OVAR

Principle

- Highly porous structure absorb concentrated solar radiation
- Ambient air, nonpressurized
- Advantages?
- Difficulties?


Source: (Fend 2010)

3. OVAR

Absorber Materials

SiSi carbide honeycomb

Source: (Fend 2012)

3. OVAR

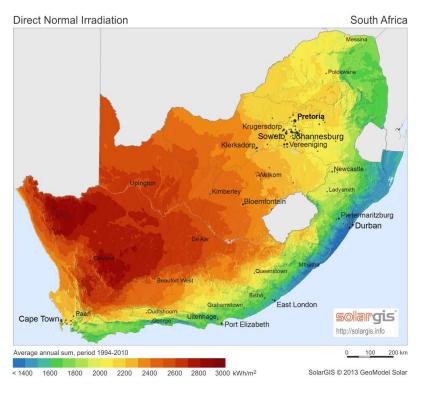
Absorber Materials

Refractory fire bricks

Merits:

- High temperature resistance
- Good thermal shock resistance
- Low thermal expansion
- Cheap and locally available

Drawbacks:


- Low porosity
- Low thermal conductivity
- High reflectance

4. SA CSP Industry

General

- SA has excellent solar resources
- Dispatchable energy is the key
- Central receivers:
 - Khi 50 MW
 - Redstone 100 MW

\bigcirc 2013 GeoModel Solar

5. Conclusion

- OVAR to be designed for the STERG test facility
- Focus on simple and cost effective design
- Novel absorber material?
- Contribute to the development of sustainable and dispatchable energy for SA

Thanks for your kind attention!

ACKNOWLEDGEMENTS:

STERG CRSES

CONTACT DETAILS:

JC Nel Solar Thermal Energy Research Group (STERG) Stellenbosch University South Africa

STERG@sun.ac.za +27 (0)21 808 4016

visit us: concentrating.sun.ac.za

References:

- Fend, T., 2012. Characterization of Advanced Solar Air Receiver Materials. , pp.1–27.
- Avila-Marin, A.L., 2011. Volumetric receivers in Solar Thermal Power Plants with Central Receiver System technology: A review. *Solar Energy*, 85(5), pp.891–910
- Fend, T., 2010. High porosity materials as volumetric receivers for solar energetics. *Optica Applicata*, 40(2), pp.271–284.

