

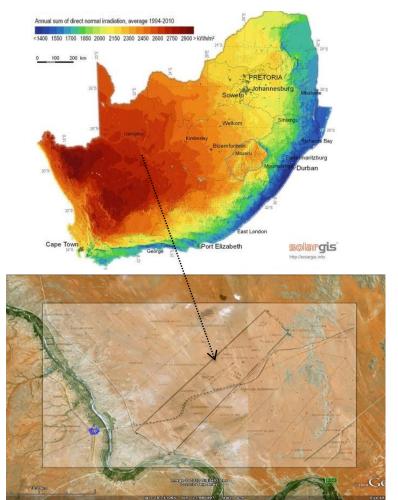
Bokpoort CSP and the Future of Solar in South Africa

Nandu Bhula –

Deputy Managing Director (Southern Africa)

Bokpoort CSP – Project Overview

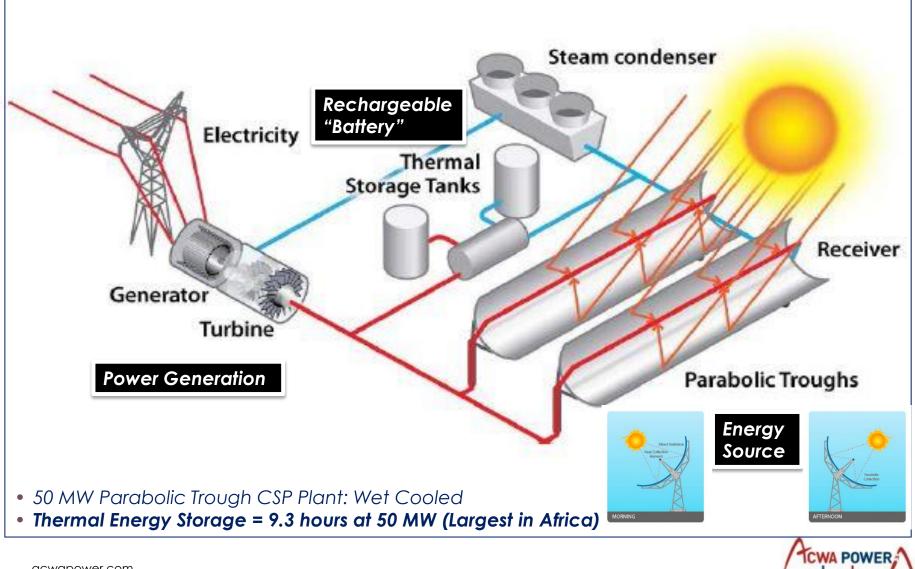
Overview of Company and Project


- Founded: Ring-fenced project company effective June 2013
 - Operational partner ACWA Power International: Saudi Arabian based with generation portfolio of 21GW and 2.4 million m³/day of desalinated water
- Total staff: ±1300 during Construction peak and 62 during Operations
- The site: Bokpoort Farm, 125km south-east of Upington (300 hectare Greenfield)
- Technology used: Concentrated solar thermal trough, with wet cooling and 1300MWht molten salt thermal energy storage (9.3hrs at 50MW)
- 20 year PPA with Eskom, through the Garona Substation located next to the site

EPC - Project status

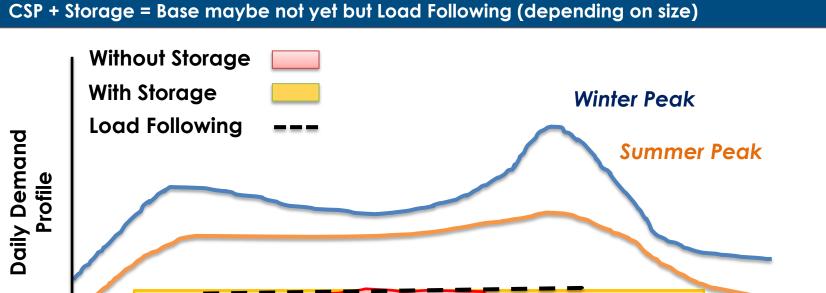
- Procurement and Suppliers: EPC consortium (Acciona, Sener, TSK, Crowie)
- 1st Synchronisation 13th November 2015
- Early Operating Date 6th February 2016
- COD 19th March 2016

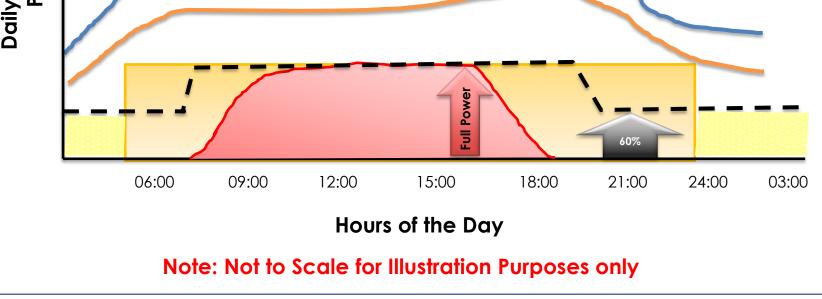
Site Location


Site Coordinates: Latt. 28°44'26.96"S Long. 21°59'34.88"E

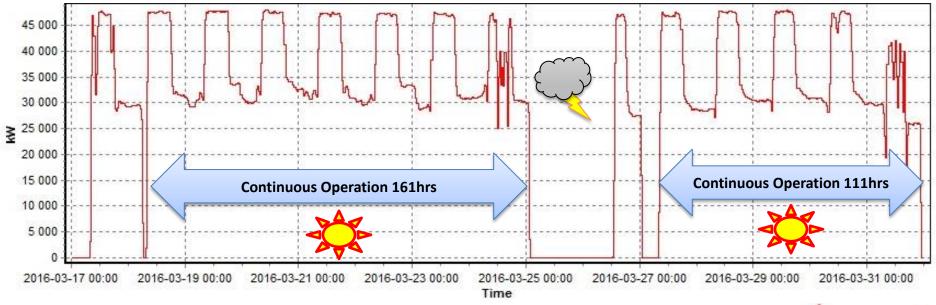
Bokpoort CSP – Plant Layout

CSP Parabolic Trough Technology with Storage


acwapower.com


Bokpoort CSP – Plant Layout

CSP Parabolic Trough Technology with Storage



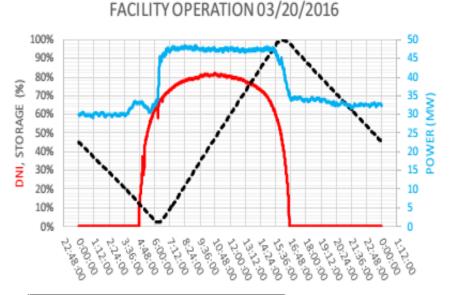
African Record*:

Busting Myths about Renewables

*Possibly World Record performance in 1st month of commercial production - TBC Period: 18 March 2016 7:00am to 25 March 2016 1:00am Record: **161 hours of Operation Continuously (Base Load 100%)** Load Factor: **76% (based on Energy Sent Out)**

Period: 17 March 2016 8:00am to 31 March 2016 11:00pm Record: **310/352 hours of operation (88% of time on Load)** Load Factor: **66% (based on Energy Sent Out**)

Bokpoort CSP - Analyzing the Performance


100% 50 90% 80% X 70% POWER (MW) STORAGE 60% 30 25 50% 20 40% Z 15 30% 20% 10 10% 5 0% 3:36:00 P.12.00 00.00.00 00:00:00 1:12:00 1:24:00 7:12:00 9:2A:00 00:36:00 10:14:00 11:36:00 00:00:00 12:48.00 12:00:00 18:00:00 19:12:00 12:AB.00 10:45.00 13:12:00 1A:7A:00 15:36:00 16:48:00 1:12:00

FACILITY OPERATION 03/19/2016

FIELD CLEANLINESS

89.5%

FACILITY INITIAL STORAGE								
LEVEL (mm)	mm) THOT (%) T COLD (%) SE1 (FACILITY)							
6288	387.1	288.1	644.7	MWht				
FACILITY FINAL STORAGE DATA								
LEVEL (mm)	SE2 (FACILITY)							
6058	388.6	288.7	624.9	MWht				
MODEL FIN	AL STORAGE,	SE2	420.1	MWht				
CONTINUOS PER	FORMANCE S	UMMARY	Daily LF =	76%				
CPf (MODEL)	909.78	MWh	PM Var =	+0.3%				
CPf (PLANTA)	912.70							

FIELD CLEANLINESS

90.4%

FACILITY INITIAL STORAGE							
LEVEL (mm)							
6058	388.6	388.6 288.7 624.9					
FACILITY FINAL STORAGE DATA							
LEVEL (mm)	mm) THOT (%C) T COLD (%C) SE2 (FACILITY)						
6090	090 388.3 286.7 639.6						
MODEL FIN	AL STORAGE,	SE2	418.7	MWht			
CONTINUOS PER	FORMANCE S	UMMARY	Daily LF =	= 78%			
CPf (MODEL)	CPf (MODEL) 915.44 MWh PM Var = +1.5%						
CPf (PLANTA)	929.53	Acw					
			/ 1011	AT OTTER			

_اور

acwapower.com

Good Stable DNI means Good Production and Model Accuracy

Bokpoort CSP - Analyzing the Performance

100% 50 90% 45 80% X 70% 35 Ž DNI, STORAGE 60% 30 50% 25 POWER 40% 20 30% 15 20% 10 5 10% 0% 1,11:148.00 00:00:00 1:12:00 1:24:00 3:36:00 P-12-00 6:00:00 1:12:00 9:2A:00 00:36:00 10:1h.00 11:36:00 00:00:00 10:48:00 12:00:00 13:12:00 16:48:00 18:00:00 19:12:00 12:MB.00 1N:74:00 15:36.00 1,171:00

FIELD CLEANLINESS

87.6%

FACILITY INITIAL STORAGE								
LEVEL (mm)	T HOT (%C)	T COLD (°C)	SE1 (FACILITY)					
5443	376.4	290.3	480.7	MWht				
FACILITY FINAL STORAGE DATA								
LEVEL (mm)	SE2 (FACILITY)							
4480	382.2	289.6	416.1	MWht				
MODEL FIN	AL STORAGE,	SE2	434.0	MWht				
CONTINUOS PER	FORMANCE S	Daily LF =	66%					
CPf (MODEL)	938.26	MWh	PM Var = -15.7%					
CPf (PLANTA)	791.07		/					

FIELD CLEANLINESS

FACILITY INITIAL STORAGE								
LEVEL (mm)	T HOT (%C)	SE1 (FACILITY)						
3942	384.4	290.6	364.1	MWht				
	FACILITY F	INAL STORAG	E DATA					
LEVEL (mm) T HOT (%) T COLD (%) SE2 (FACILITY)								
2760	383.0	289.6	238.7	MWht				
MODEL FIN	AL STORAGE,	SE2	52.2	MWht				
CONTINUOS PERFORMANCE SUMMARY Daily LF = 57%								
CPf (MODEL)	785.75	PM Var =						
CPf (PLANTA)	688.59	MWh						

ICWA POWER

اور

87.9%

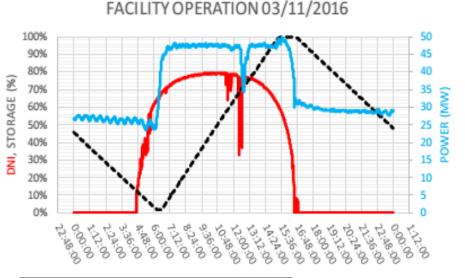
FACILITY OPERATION 03/09/2016

FACILITY OPERATION 03/14/2016

acwapower.com

Erratic DNI means Lower Production and higher Model Error

Bokpoort CSP - Analyzing the Performance


100% 50 45 90% 80% DNI, STORAGE (%) 70% 2 N 60% 30 50% 25 POWER 40% 20 15 30% 20% 10% 0% 0:00:00 1:24:00 3:36:00 P.100 6:00:00 7:12:00 8:2A:00 00:36:00 00:00:00 12:48.00 18:00:00 19:12:00 10:24:00 21:36:00 1:12:00 10:49:00 12:00:00 13:12.00 1A:2A:00 15:36:00 16:48:00 12:48:00 1:12:00

FACILITY OPERATION 03/17/2016

FIELD CLEANLINESS

87.8%

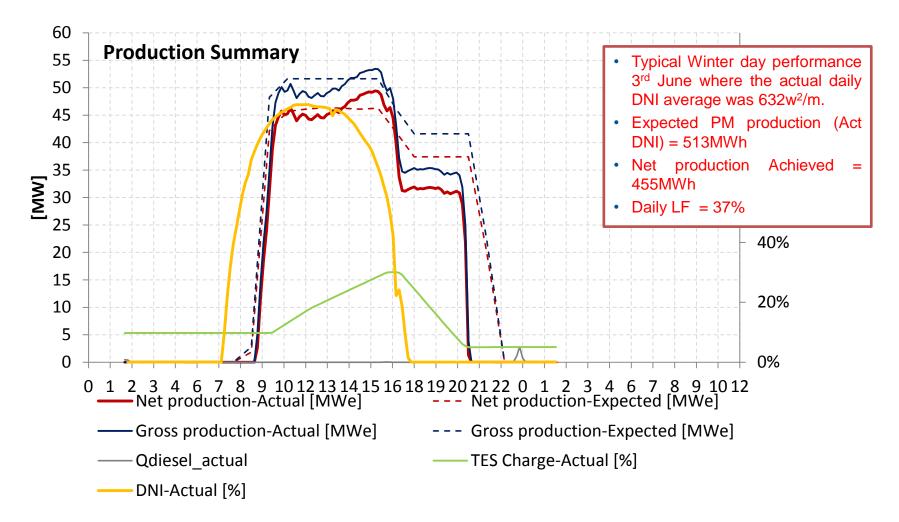
FACILITY INITIAL STORAGE								
LEVEL (mm)	(mm) THOT(%C) T COLD (%C) SE1 (FACILITY)							
727	374.8	289.0	22.9	MWht				
FACILITY FINAL STORAGE DATA								
LEVEL (mm) T HOT (%C) T COLD (%C) SE2 (FACILITY)								
4331	381.4	289.7	396.3	MWht				
MODEL FIN	AL STORAGE,	SE2	422.1	MWht				
CONTINUOS PER	FORMANCE S	UMMARY	DeilertE	CC 0/				
CPf (MODEL)	883.10	Daily LF =						
CPf (PLANTA)	795.11	PM Var = -	-10.0%					

FIELD CLEANLINESS

88.0%

FACILITY INITIAL STORAGE								
LEVEL (mm)	T HOT (%C)	T COLD (%C)	SE1 (FACILITY)					
6130	377.8	289.0	565.0	MWht				
FACILITY FINAL STORAGE DATA								
LEVEL (mm)	T HOT (%C)	THOT (%C) T COLD (%C) SE2 (FACILIT						
6422	384.1	288.5	MWht					
MODEL FIN	AL STORAGE,	SE2	427.1	MWht				
CONTINUOS PER	FORMANCE S	Daily I.E	7/10/					
CPf (MODEL)	935.17	Daily LF = 74%						
CPF (PLANTA)	886.02	PM Var =	-5.2%					

MWh


886.02

PM Var = -5	.2
-------------	----

Lower Production could mean Poor Storage Management

CPf (PLANTA)

Current findings (within first 8 months of production) suggests that the TMY used for Model appears to be changing – higher in Summer months but Lower in Winter This needs further verification over a longer production period

- Long Term Operation philosophy is to aim towards Continuous Operation

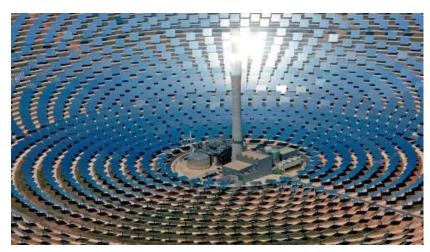
 This has been proven to be possible in March 2016
- This is likely possible over the period Sep-Mar (6months) however dropping DNI number over winter months will require stop-start regime.
- During current long term performance test period, the regime is one of maximum energy at highest Efficiency, this is aligned to proposed winter operating regime
- For long term plant health and maintenance optimization, starting/stopping impacts Turbine EOH and thus further optimization in this regard is required, in particular, over summer months
- Optimisation for life cycle is under review to establish maximum value for shareholders over PPA term
- Thus current operating regime planned:
 - Months Sept-Mar Continuous Operations strategy (8 hrs max Power, 16 hrs 50% Power TES) – Load Follower
 - Months Mar-Sep Maximum Turbine Efficiency (14-15 hrs Max Power incl during TES) – Two shifter

Future of CSP in South Africa

.... Review of IRP 2010 updated version (Nov 2013)

- New CSP modelled to only start around 2030 (based on learning rate and Scenarios)
- "Big Gas" Scenario has no further CSP consideration
- All Scenarios have dependency on OCGT's with even new plant planned as early as 2022
- CSP Plant with storage can contribute significantly but allocation now will accelerate Learning Rate for LCOE to reduce rapidly – already better then OCGT
- CSP Plant are modelled as Peaking options only

U


• Assumption regarding lead time and Load Factor related to CSP with Storage need review based on Bokpoort Experience

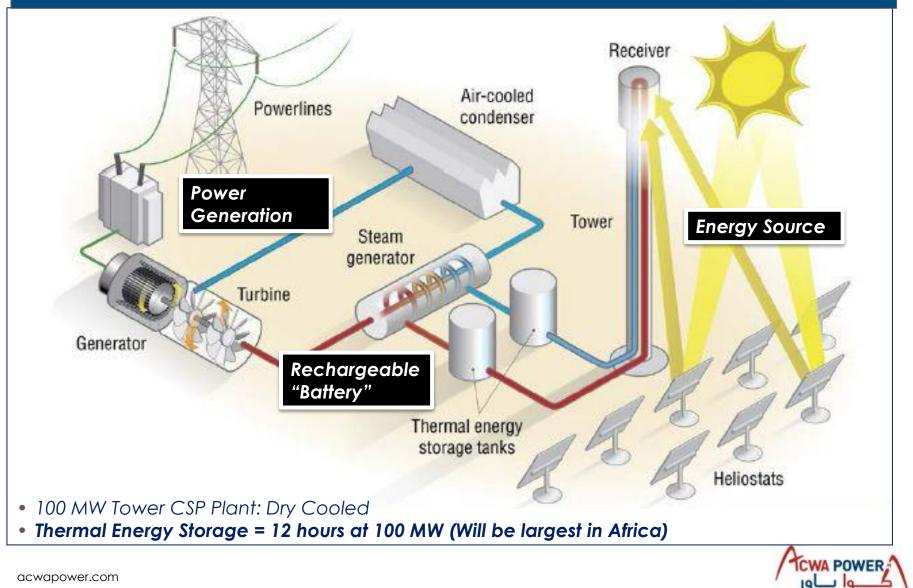
	OCCT	CCGT	Wind	CSP, Po	arabolic	Trough	CSP, C	entral Re	eceiver	PV
	OCGI	CCGI	wind	3hrs	6hrs	9hrs	3hrs	6hrs	9hrs	Fx tilt
Rated Capacity (MW) Life of Programme	115 30	711 30	100 20	125 30	125 30	125 30	125 30	125 30	125 30	10 25
Typical Load Factor Lead Time	10% 2	50% 3	30% 4	31% 4	37% 4	43% 4	32% 4	40% 4	47% 4	19% 2
acwapower.com			CSP trough with 9hrs should be closer to 60% LF and 3 years lead time					r		

CSP Technology Maturity

The Technology Landscape

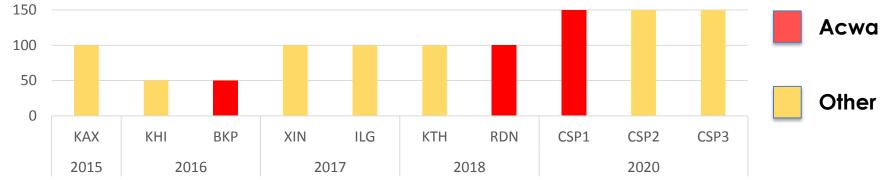
CSP Parabolic Trough

- Proven development and operational track record
- Employs single axis trackers
- "off-the-shelve" designs and systems available
- Higher energy losses/aux requirements in comparison to tower due to extensive solar field piping
- Local content opportunities high
- Lower Uncertainty mature with 30 month delivery

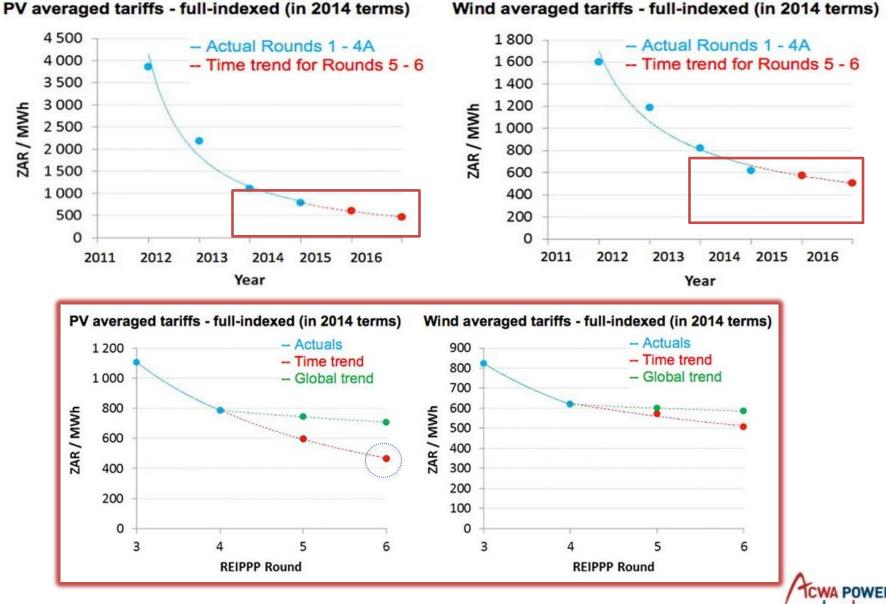

CSP Central Tower

- Can reach much higher temperatures leading to greater efficiency.
- One less energy transfer step as it produces steam directly from Salt (no HTF) maximizing plant efficiency.
- The flat mirrors used in heliostats are cheaper than parabolic trough mirrors
- Can be built over more rough terrain as each heliostat's position is independent to its neighbouring heliostats
- 30 month delivery (technology maturing but more efficient cost effective)

Redstone Tower CSP – Plant Layout

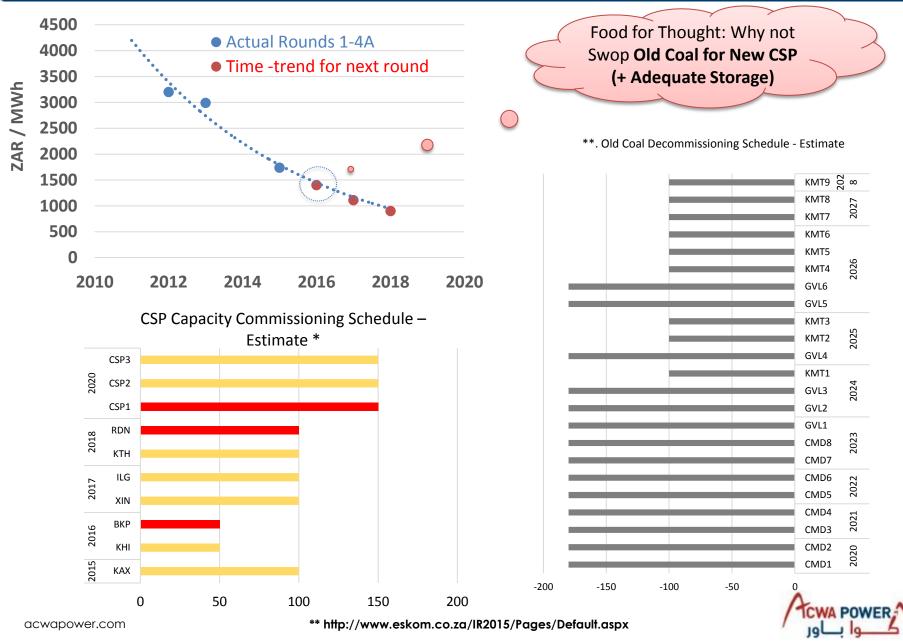

CSP Tower Technology with Storage

South African CSPs – Capacity and Capability

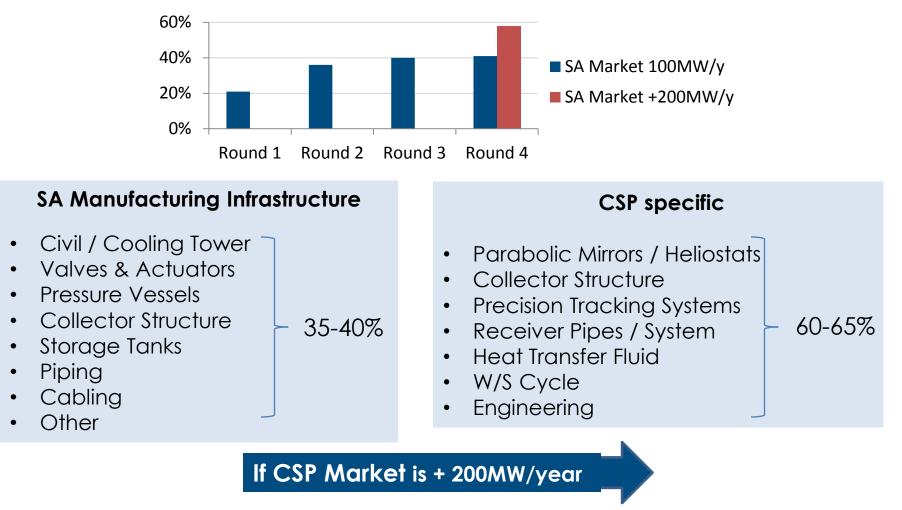

CSP Capacity Commissioning Schedule - Estimate

http://www.nrel.gov/csp/solarpaces/by_country_detail.cfm/country=ZA

Project Name:	KaXu Solar One	Khi Solar One	Bokpoort	Xina Solar One	llanga l	Kathu Solar Park	Redstone	CSP1
Country:	South Africa	South Africa	South Africa	South Africa	South Africa	South Africa	South Africa	South Africa
Location:	Poffader	Upington	Groblershoop	Pofadder	Upington	Kathu	Postmasburg	Upington
Technology:	Parabolic trough	Power tower	Parabolic trough	Parabolic trough	Parabolic trough	Parabolic trough	Power tower	Power tower
Turbine Net Capacity:	100	50	50	100	100	100	100	150
Status:	Operational	Operational	Operational	Under construction	Under construction	Under construction	Under development	Preferred Bidder Stage
Start Year:	2015	2016	2016	2017	2017	2018	2018	2019
Thermal Storage	2-tank indirect	HP Steam Vessels	2-tank indirect	2-tank indirect	2-tank indirect	2-tank indirect	2-tank direct	2-tank direct
Storage Capacity:	2.5 hours	2.5 hours	9.3 hours	5 hours	4.5 hours	4.5 hours	12 hours	7.5 hours
Thermal Storage Description:	Molten salts	Saturated steam	Molten salts	Molten salt	Molten salt	Molten salt	Molten salt	Molten salt
Potential Grid Contribution	Peaking	Peaking	Base/Load Following	Peaking /Load Following	Peaking /Load Following	Peaking /Load Following	Base Load	Base/Load Following


Evolution of Tariffs in South Africa – Solar and Wind

acwapower.com


http://www.energyramblings.com/tag/reippp/

Prospects for CSP with greater allocation

* http://www.nrel.gov/csp/solarpaces/by_country_detail.cfm/country=ZA

Possibilities that CSPs bring for Increased Local Content

CSP Market Size means Economies of Scale

Repeatability (e.g. collector structure)

Bokpoort Local Content: Competence & Knowledge

Local Spend Analysis

- Total local value add (in ZAR) Approx R1.6 Billion
- Large portion of Local value add in Civil works: Concrete, Reinforcing steel, structure steel etc.
- Main SA manufacturers
 - Turnmill (Gauteng) HTF Expansion/Overflow Vessels
 - MEAPSA (Upington) Salt Tanks (Thermal Storage)
 - Made SA (Gauteng) Torque Tubes, Pylons for Solar Field
 - TRP SA (Cape Town) Torque Tubes, Pylons for Solar Field
 - Approximately 8160 tonnes of steel for all Torque Tubes
 - Approximately 1200 tonnes of steel for all Pylons

Main SA Pre-Assemblers and On-site Assemblers

- Proimtu (Upington) HTF Solar field piping
- CAMETO (Upington) HCE Stainless steal piping
- Condusav (Cape Town) HP Power Block Piping
- Batz (On Site) Solar Collector Elements

• Total Estimated training performed 100000 hours,

- Safety Training 20%
- Small Tools Use 20%
- Job Training & Skills Specific Training 60%
 - On Scaffold Use, Foundation Erection, Welding Setup, Electrical Cable Pulling & Termination,

SA Manufacturing and Pre-Assembly

acwapower.com

HTF - Heat Transfer Fluid, HCE – Heat Collector Element, SCE – Solar Collector Element

Key Socio-Economic Considerations

Local Employment: The Bokpoort Project has successfully managed to increase the number of employees from the local Municipality (averaged around 40%).

Support to Local Communities

Community Engagement

Welding apprenticeship

Solar Lighting Project – 300 homes

Palms Training Centre (180 trained – 50% female) Courses Business skills, Problem solving skills & semi-skills training.

Topline Water Reticulation Project – provided drinking water to 77 homes)

Support to local high school

.... We need to have a long term view on **CSP with Adequate Storage** in SA given capabilities proven by current CSP's in operation:

- 1. Only **storable renewable energy** with utility scale Peaking and **Base Load/Load Following Capability**
- 2. Flexibility in dispatch meets SA demand profile
- 3. SA is blessed with an **enviable Solar Resource**
- 4. Short lead times for quick deployment possibility
- 5. Extremely competitive (LCOE Learning rate Round 4.5)
- 6. Existing SA manufacturing infrastructure complements CSP
- 7. Potential to increase **local content** whilst growing **local competence and knowledge**
- 8. Greater Socio-economic development for local communities

Thank you

