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Simplified Fan Models

* Numerical modelling is used to
predict the performance of air-
cooled heat exchangers under a
variety of operating conditions

 System complexity - Large
numbers of fans

 High computational and
economic expense of explicit fan
models
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A large air-cooled heat exchanger (adapted from Louw (2015))



The Actuator Disk Model

« Simplified fan model developed by Thiart and von Backstrém
(1993).

 Represents a fan by introducing momentum source terms on
the plane in which the fan acts

« Source terms are calculated by blade element theory and
aerofoil data

« Sensitive to distorted in flows
» Successfully used in several studies
* Shortcoming: Performs poorly at low flow rates
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Actuator Disk Models

« Standard Actuator Disk Model
— Performs well at design flow rate, however does not perform well at
low flow rates
« Two modified versions of the standard ADM have been
developed with the aim of improving fan performance
prediction at low flow rates
— The Extended Actuator Disk Model (EADM) of van der Spuy (2011)

— The Reverse Engineered Empirical Actuator Disk Model (REEADM) of
Louw (2015)
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Actuator Disk Models

« Models are compared to experimental data in terms of fan
static pressure, power and fan static efficiency

« The velocity prediction of the models is compared to the results
of the Periodic 3 Dimensional Model (P3DM) of Louw(2015). The
P3DM is a highly detailed nhumerical model of a single blade
passage in the test fan

* This was done as the experimental measurement of velocity
profiles directly up and downstream of the blades is not
possible
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Experimental Fan

Shroud Diameter 1.542 m
Blade Number 8

Fan Diameter 1.536 m
Hub/tip Ratio 0.4
Aerofoll NASA LS 413
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B2a fan schematic (adapted from Louw (2015))



Experimental Fan

P 6000 W
APrs 210 Pa

v 16 m3/s
N 750 rpm

 Near free vortex design

« Designed to perform well at
decreasing flow rates
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Experiments
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The Actuator Disk Model

« Fan blades replaced by 3 cell
zones

 Actuator disk introduces fan
forces into the Navier-
Stokes equation source
terms

« Upstream and downstream
disks are used to compute
the average relative velocity
angles in order to compute
angle of attack
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The Actuator Disk Model

Once angle of attack is known, the
aerofoil lift coefficient can be calculated

Momentum source terms are calculated
as follows

L= %pwézlmCLch. Sr
D = %pwgszDch. or

F, = Lcosfs + Dsinfy,
Fg = Lsinfo, — Dcosfo

YF, F YFg _ Fg
av Azsp dv Azsp
YF

T — 0
av
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Lift coefficient [C\]

The Extended Actuator disk model

- - B-fan coefficients (as per Appendix C)
— Extended lift coefficient

T y’ O T T T T T
-1%.0 -10.0 5.0 0j0 5.0 10.0 15.0 20.0 25.0

Angle of attack, e[

EADM extended lift coefficients (van der Spuy 2011)

STERG 5 STELLENBOSCH

UNIVERSITY

Attempts to improve low flow
rate performance by CL
augmentation

The reasoning behind this
model stems from
Himmelskamp (1947)

The EADM is based on the
model of Gur and Ronsen (2005)

The EADM attempts to
enhance performance at low
flows by extending the linear
section of the aerofoil lift
coefficient vs angle of attack
curve



The Reverse Engineered Empirical ADM

« The REEADM makes use of lift drag and
radial force data extracted from the
P3DM explicit fan blade model

« Aims to account for radial forces

* Model aims to be less computationally
expensive than the P3DM while
offering better performance than the
ADM

« R=EF
. B R
T 0.5pwch
Lift data used in the REEADM (Louw, 2015)
. IZF_ _F
av Az sp

STERG 5 STELLENBOSCH

UNIVERSITY



Numerical Modelling

Computational Domain
Side Front

~ Pressure outlet

Wall i

Mass flow
inlet

Position of actuator disk
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Numerical Modelling

Solver settings
Parameter

Discretisation scheme Least square cell based
(Gradient)

Discretisation scheme Standard
(Pressure)

Discretisation scheme QUICK/2" order upwind
(other)

Pressure —velocity coupling SIMPLE
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Numerical Modelling

Mesh independence

. IModel |ADM ______|REEADM EADM
Cell count Mesh type Static pressure coefficient (¢)

7.91E+04 B& 0.102 0.087 0.105
1.19E+06 R& 0.102 0.086 0.105
3.18E+05 S 0.102 0.087 0.105
4.90E+04 Rt 0.102 0.085 0.104
7.28E+04 o, 0.102 0.085 0.104
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Results
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Results
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Results
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Results Velocity profiles
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Results Velocity profiles
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Results Velocity profiles
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Results Velocity profiles
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Results Velocity profiles
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Results Velocity profiles
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Conclusions

« All models greatly under
predict the radial velocity

component at low flow rates Actuator

Charactorisation at low flows P P
(2.1 -3 GH2) (3.4 GHz)

e The REEADM does not make RAM 15 Gb 32 Gb
much improvement on the 2-28 days 10-120 min
other models in spite of its

detail

« The extra effort of generating
a full 3D CFD model in order to
generate the REEADM is not
justified by its performance
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Conclusions

All models give good velocity profile prediction at design flow
rate

Instability in the EADM and REEADM at high flow rates

The standard ADM gives a good trade off between ease of
implementation and fan performance and flow field prediction
at higher flow rates

The EADM gives better low flow performance and is relatively
simple, there is scope for improvement

At design conditions despite its better performance the
REEADM is a less attractive modelling option than the Standard
ADM due to the extra computational expense in its
development
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