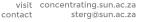


The Feasibility of Solar Thermal Process Heat for the Sugarcane Industry in South Africa

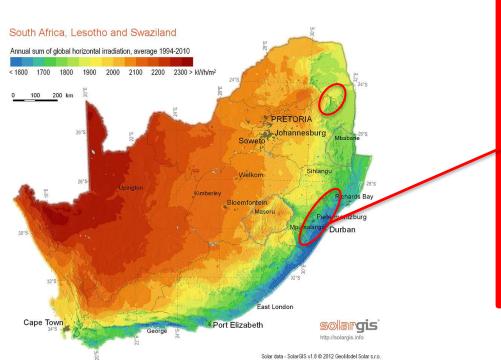
Hendri Beukes, Dr. Stefan Hess

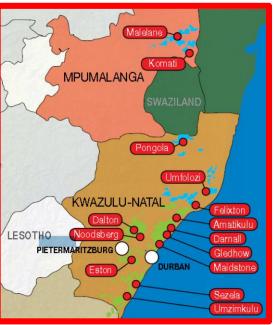
Solar Thermal Energy Research Group (STERG), University of Stellenbosch

Agenda


Overview

- Overview of the S.A. Sugar Industry
- Raw Sugar Production
- Drivers of Innovation
- SPH Technology & Low Hanging Fruit
- Potential of SPH Integration
- Expected Results





Location

contact

3rd Annual STERG SolarPACES Symposium 14 & 15 July 2015 Stellenbosch, South Africa

Overview

Location: KZN & Mpumalanga

Production: > 2m tons/a (20m tons cane)

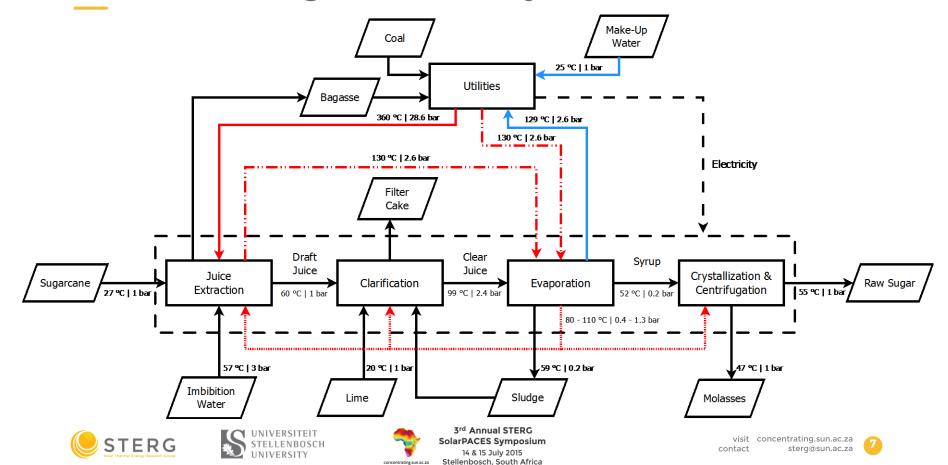
Season: March - December

Contribution: R12b per year

Employment: 79 000 | 12 750

Sugar Milling: 14 Raw Sugar Factories

Market: Highly Regulated Prices


SMRI: Profitability, Efficiency & Innovation

Drivers of Innovation

Economic Pressure: Low Prices, Rising Input & Operational Costs

- → Reduce Operational Costs
 - Reduce Coal Consumption
- → Explore Alternative Income Streams
 - Bagasse By-Products
 - Bio-Ethanol
 - Electricity Cogeneration

Technology Characteristics

Temperatures: 25 - 450 °C

Pressure: Up to 40 bar

Integration: Supply Level / Process Level

Power and gain: 700 W_p/m² peak power

Potential Gain: Up to 1 MWh/m² per annum

System size: No technical limit (Area, Capital)

Fresnel Collector

Parabolic Trough Collector

Central Tower Receiver

Flat-Plate Collectors

Evacuated Tube Collectors

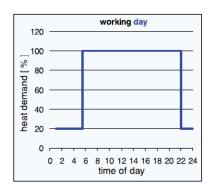
Stationary Concentrating Collector

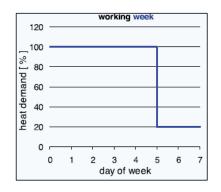
Potential for the Sugar Industry

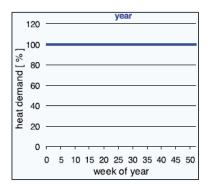
Objective: Identify & Assess Suitable SPH Integration Points

Methodology:

- 1. Develop a flow diagram of a generic sugar mill
- 2. Analyse the energy consumption
- 3. Identify potential SPH integration points
- 4. Assess & rank the integration points
- 5. Develop concept designs
- 6. Estimate the potential solar gains
- 7. Assess the techno-economic feasibility

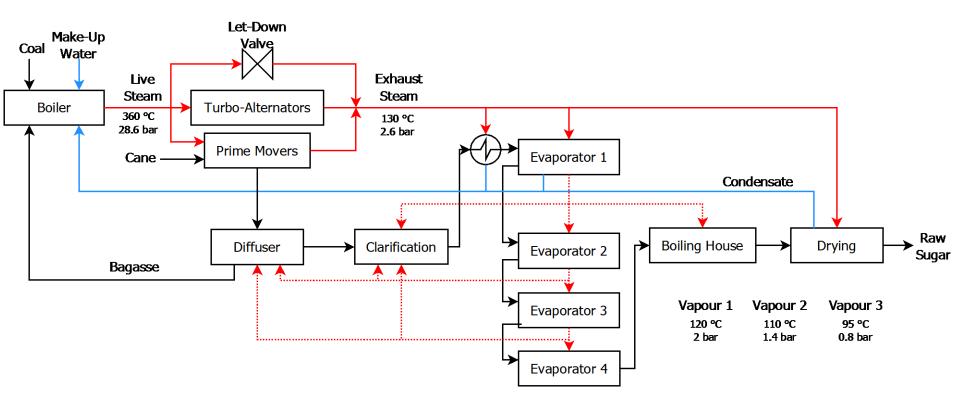






Low Hanging Fruits

- Low Process (Return) Temperature
- High Temperature Lift
- High & Constant Heat Demand
- Demand Concurs with High Irradiance



Entry Barriers

Low Cost of Energy: Bagasse

Heat Distribution: Exhaust, Vapour

Seasonality: March - December

Relatively Low Irradiation: 2000 kWh/m²

Area Requirements: Limited Area

Potential Integration Points

Heat Sink	Fuel / Heat Source	Process Temperature	Temperature Lift	Mean Load
Live Steam Injection	Bagasse & Coal	360 °C	N/A	90 MW
Feed Water Pre-Heating	Bagasse & Coal	129 °C	230 °C	75 MW
Make-Up Water Pre-Heating	Bagasse & Coal	25 °C	335 °C	N/A
Evaporation	Exhaust Steam	114 °C	7 °C	58 MW
Clear Juice HEX	Exhaust Steam	100 °C	14 °C	4 MW
Sugar Drying	Exhaust Steam	25 °C	55 °C	0,6 MW
Bagasse Drying	Bagasse & Coal	72 °C	N/A	N/A

Thank You

ACKNOWLEDGEMENTS:

Hess, S. & Oliva, A. 2010. Solar Process Heat Generation: Guide to Solar Thermal System Design for Selected Industrial Processes. Linz.

Muster, B., Hassine, I. Ben, Helmke, A., Hess, S., Krummenacher, P., Schmitt, B. & Schnitzer, H. 2015. Solar process heat for production and advanced applications.

PVGIS (c) European Communities, 2001-2012

Starzak, M. & Zizhou, N. 2015. *Biorefinery Techno-Economic Modelling: Sugar Mill and Ethanol Distillery Process.* Durban.

CONTACT DETAILS:

H.T. Beukes
Solar Thermal Energy Research
Group (STERG)
Stellenbosch University
South Africa

STERG@sun.ac.za +27 (0)21 808 4016

visit us: concentrating.sun.ac.za