

UNIVERSITEIT • STELLENBOSCH • UNIVERSITY jou kennisvennoot • your knowledge partner

Solar thermal storage in power generation using phase change material with heat pipes and fins to enhance heat transfer. D.J. Malan^a & R.T. Dobson^a ^aSolar Thermal Energy Research Group (STERG), University of Stellenbosch

SOLAR THERMAL ENERGY RESEARCH GROUP

Design philosophy and objectives

Use passive natural occurring phenomena to transfer heat:

- Design and test a modular PCS module.
- Determine the module's thermal characteristics experimentally.
- Develop a numerical model and validate it by comparing it to the module experiments.
- Use the results to design a PCS system for a power generation application.

Fig I. Internal energy of wax and water

Fig 2. Rectangular multichannel heat pipes

Background to phase change storage systems ³ (PCS)

Phase change storage system advantages

- Stores more heat across smaller temperature range,
- Saves on premium fuels and
- Increases system reliability and may improve energy performance.

Experimental setup

Experimental procedure:

- Measure temperatures and flow rates.
- Calculate energy balance of the components during the cycle.

Charge up phase

- Heat kettle water to 90°C
- Keep kettle water close to 90°C until all the wax has melted

Discharge phase

- Extract hot water from kettle
- Cool down wax container with heat exchanger

C

Fig 4. Experimental setup of the PCS module

Numerical thermal resistance model

- Keep track of the temperature and state (is it solid, mixture or totally liquid) in the control volumes.
- Change the length of wax as it melts and expands or solidifies and contracts.

SOLAR THERMAL ENERGY RESEARCH GROUP

Fig 6-7. Power and energy response from the charge cycle.

S Power and energy response discharge phase

Fig 9-10. Power and energy response from the discharge cycle.

Fig 12. System layout of solar tower with latent storage

Temperatures during the summer solstice

RESEARCH GROUP

Fig 14. Energy variations during simulation

SOLAR THERMAL ENERGY RESEARCH GROUP

SOLAR THERMAL ENERGY RESEARCH GROUP

- The numerical model correlates well with the experimental tests.
- Heat is quickly transferred into the wax during the charge phase and it can be quickly extracted due to the many finned heat paths.
- Heat pipes and fins are effective in transferring heat to and from the storage container.
- The numerical storage model was successfully used to simulate a power plant fitted to the Helio 100 field
- Power may be generated around the clock with the Helio 100 solar field or alternately it may be used as a small peaking station with the aid of a PCS system

All glory to my LORD Jesus Christ for the opportunity to do this research. I also acknowledge M&M workshop CHE factory STERG NRF

Contact details:

D.J. Malan Solar Thermal Energy Research Group (STERG) Stellenbosch University South Africa

danie.j.Malan@gmail.com

visit us:

concentrating.sun.ac.za