

Shadowing and blocking effect optimization for a variable geometry heliostat field

Pablo Cádiz, <u>Miguel Frasquet</u>, Manuel Silva, Fernando Martínez, Jose Carballo

2nd Annual STERG Symposium, Stellebosch, July 2014

CTAER (Centro Tecnológico Avanzado de Energías Renovables)

Advanced Technology Centre for Renewable Energies

PRER INTRODUCTION

$\eta_{opt}(x, y, t) = \rho \cdot f_{\cos\theta}(x, y, t) \cdot f_{at}(x, y) \cdot f_{spill}(x, y, t) \cdot f_{sb}(x, y, t)$

Centro Tecnológico Avanzado de Energías Renovables

ANDALUCÍA

2nd Annual STERG Symposium

ER INTRODUCTION

 $\eta_{opt}(x, y, t) = \rho \cdot f_{\cos\theta}(x, y, t) \cdot f_{at}(x, y) \cdot f_{spill}(x, y, t) \cdot f_{sb}(x, y, t)$

Centro Tecnológico Avanzado de Energías Renovables

ANDALUCÍA

2nd Annual STERG Symposium

July 2014

ROTATING FIELD

Centro Tecnológico Avanzado de Energías Renovables

A N D

2nd Annual STERG Symposium

ALUCÍA July 2014

ROTATING FIELD

IMPROVING THE COSINE FACTOR

Centro Tecnológico Avanzado de Energías Renovables

A N D

2nd Annual STERG Symposium

ALUCÍA July 2014

6

ROTATING FIELD

Mobile heliostats

Concentric circular rails

Centro Tecnológico Avanzado de Energías Renovables

Ν

A

D

2nd Annual STERG Symposium

July 2014

A

ALUCÍ

7

 $\eta_{opt}(x, y, t) = \rho \cdot f_{\cos\theta}(x, y, t) \cdot f_{at}(x, y) \cdot f_{spill}(x, y, t) \cdot f_{sb}(x, y, t)$

 $\eta_{opt}(x, y, t) = \rho \cdot f_{\cos\theta}(x, y, t) \cdot f_{at}(x, y) \cdot f_{spill}(x, y, t) \cdot f_{sb}(x, y, t)$

 $\eta_{opt}(x, y, t) = \rho \cdot f_{\cos\theta}(x, y, t) \cdot f_{at}(x, y) \cdot f_{spill}(x, y, t) \cdot f_{sb}(x, y, t)$

ROTATING FIELD OPTIMIZATION CODE

Stationary Field

Variable Geometry Field Common Operation strategy Variable Geometry Field Individual Operation strategy

2nd Annual STERG Symposium

ROTATING FIELD OPTIMIZATION CODE

CODE STRUCTURE

New code developed in MatLab (Energy simulation)

MATLAB

Re-design Shadow &

Blocking calculation engine

Validation

Ray-tracing

On field real validation

Commercial codes

 Optimization problem
 Optimization algorithm
 Validation

 Heliostat position with field simmetry Int (n/2) +
 Int (n/2) +

Field Velocity

Genetic algorithm Modified deterministic hill-climbing

(Hourly Energy simulations)

Centro Tecnológico Avanzado de Energías Renovables

ANDALUCÍA

2nd Annual STERG Symposium

July 2014

ROTATING FIELD OPTIMIZATION CODE

RESULTS (4pm – 113hel)

Centro Tecnológico Avanzado de Energías Renovables

D A

A N

2nd Annual STERG Symposium

LUCÍ

A

CONCLUSIONS

- Although rotating fields show significant benefits in terms of optical efficiency, rotating the whole field keeping the staggered structure decreases the Shadowing & Blocking performance
- It is necessary to use an individual operation strategy instead of a common strategy
- To calculate the heliostat position in each moment is necessary to solve an optimization problem of a significant number of variables
- The code developed by CTAER reduces the time spent in S&B calculations and uses new optimization algorithms
- Using an individual control strategy the combined effect of the cosine factor and S&B can be improved more than 10% with respect to a north stationary field.

Centro Tecnoló	g i	i c	0	A	٧	а	n	Z	a c	i	0	d	е	E	n	е	r	g	í a	S	R	e	n	0	٧	а	b	1	e	s	1
			Α	N	N	D		Α	L	6	U	C	Í		A																
2nd Annual STERG Symposium								Jı	J	y 2	01	4																			

Thanks for your attention!

For further information please contact:

- Miguel Frasquet Herraiz
- Sol Luca de Tena

miguel.frasquet@ctaer.com sol.lucadetena@ctaer.com

APPENDIX

Centro Tecnológico Avanzado de Energías Renovables

ANDALUCÍA

2nd Annual STERG Symposium

July 2014

 $\eta_{opt}(x, y, t) = \rho \cdot f_{\cos\theta}(x, y, t) \cdot f_{at}(x, y) \cdot f_{spill}(x, y, t) \cdot f_{sb}(x, y, t)$

$$\eta_{opt}(x, y, t) = \bigwedge f_{\cos\theta}(x, y, t) \cdot f_{at}(x, y) \cdot f_{spill}(x, y, t) \cdot f_{sb}(x, y, t)$$

<u>Spillage</u>

- Size of the receiver
- Slant range
- Incidence angle on the receiver
- Optic aberration (Astigmatism)

Same Incidence angle on the receiver in both cases

Centro Tecnológico Avanzado de Energías Renovables

ANDALUCÍA

ISES 2013

November 2013

$$\eta_{opt}(x, y, t) = \bigwedge f_{\cos\theta}(x, y, t) \cdot f_{at}(x, y) \cdot f_{spill}(x, y, t) \cdot f_{sb}(x, y, t)$$

<u>Spillage</u>

- Size of the receiver
- Slant range
- Incidence angle on the receiver
- Optic aberration (Astigmatism)

Centro Tecnológico Avanzado de Energías Renovables

ANDALUCÍA

ISES 2013

November 2013

$$\eta_{opt}(x, y, t) = \bigwedge f_{\cos\theta}(x, y, t) \cdot f_{at}(x, y) \cdot f_{spill}(x, y, t) \cdot f_{sb}(x, y, t)$$

$$\left(\frac{h_s}{\beta_s \cdot d}\right) = \frac{Area \ 2}{Area \ 1}$$

Represents the increase of the reflected image with respect to the ideal one (incident angle equal to cero)

Dimensionless

size

(6	a	n	t	r	0	Γ	e	с	n	0	1	ó	a	i	C	0	F	1	v	а	n	Z	а	d	0	d	e	E	r	1	e	r	a	í	а	s	R	e	n	C		v	a	b	1	e	S	
	-	-						-	-		-	1.0		3		-	-						-	-		-		-	-			-		3			-				-	-					-	1.7	

ANDALUCÍA

ISES 2013