

UNIVERSITEIT • STELLENBOSCH • UNIVERSITY jou kennisvennoot • your knowledge partner

Rock bed thermal storage for CSP: Design considerations

K.G. Allen, T.W. von Backström, D.G. Kröger

concentrating.sun.ac.za

2nd Annual STERG SolarPACES Symposium 17 July 2014 Stellenbosch, South Africa

- Context and motivation for rock beds
- Design considerations
 - I. Rock and containment: 'ratcheting'
 - 2. Air: high volumetric flow
 - 3. Rock bed pressure drop prediction

- 4. Thermal characteristics, sizing and cost estimate
- Conclusion

Current "state of the art":

Two-tank molten salt (Medrano et al., 2010. Renew. & Sust. Energy Rev. 14:56-72)

SUNSPOT combined cycle (Kröger)

- Stress-induced failure of containment/particles
- Expansion and contraction of particles and container

Containment vessel failure

- Heat transfer capacity of 1 MW with $\Delta T = 300$ °C:
- Q = ρVcΔT; air c = 1040 J/kgK, ρ = 0.67 kg/m³; molten salt c = 1200 J/kgK, ρ = 1700 kg/m³
- V air: 4.8 m³/s; V salt: 1.6 × 10⁻³ m³/s a factor of 3000 ...

Bed containment: the concept of Kröger (2013)

Influence of:

- Particle shape
- Alignment
- Packing arrangement
- Roughness

Goal:

 Prediction of rock bed pressure drop (pumping power and cost)

Variation of apparent friction factor

A

Field use: the volume-equivalent sphere diameter

100

Counter-current packing

Using the volume-equivalent sphere diameter:

Co/counter-current packing

$$f_{\nu} = \frac{\Delta p}{L(\rho v_s^2/2)} \frac{\varepsilon^3}{(1-\varepsilon)} D_{\nu} \approx 76.47 \left(\frac{1-\varepsilon}{Re_{p\nu}}\right)^{0.343}$$

Cross-current packing

$$f_{\nu} = \frac{\Delta p}{L(\rho v_s^2/2)} \frac{\varepsilon^3}{(1-\varepsilon)} D_{\nu} \approx 80.94 \left(\frac{1-\varepsilon}{Re_{p\nu}}\right)^{0.41}$$

Where $50 < Re_{\nu} < 500$ and $Re_{\mu\nu} = Re_{\nu}(1 - \varepsilon) = \frac{\rho v_s D_{\nu}}{\mu}$

E-NTU Temperature prediction (< 75 °C)

High temperature test facility (500 - 600 °C)

- Importance of taking into account varying c_p
- Friction factor alteration with thermal cycling

Bed sizes for different steam cycle outputs (12 hr)

Steam cycle,	Required A _{cs} ,	Bed	Rock	Rock mass,
MW _e	m²	volume, m ³	volume, m ³	10 ³ kg
I (3.03 MW _{th})	76 (8.7×8.7)	532	319	845
0	760 (28×28)	5320	3190	8450
100	7600 (87×87)	53 200	31 900	84 535

Storage system cost estimate

Steam cycle,	Rock cost,	Bed cost	Bed cost	Molten salt,
MW _e	10 ⁶ R	(<mark> 0x</mark>), I0 ⁶ R	(3x), I 0 ⁶ R	10 ⁶ R
I (3.03 MW _{th})	0.17	1.7	0.51	8.0
10	1.7	17	5.1	80
100	17	170	52	800

- Ratcheting and air volumetric flow through storage
 - > Problems can be minimised by design
- Pressure drop prediction
 - > Importance of particle shape, roughness, arrangement
 - No general correlation
 - > Correlation for specific material and packing arrangement
 - For irregular asymmetric particles packing & air flow direction crucial
- Thermal characteristics, sizing and cost estimate
 - Lower cost than molten salt (est. factor of 4 5 for scale)

Acknowledgements: STERG, CRSES, DST, NRF Department of Mechanical and Mechatronic Engineering **Contact details:**

Kenny Allen Solar Thermal Energy Research Group (STERG) University of Stellenbosch South Africa

kallen@sun.ac.za

visit us:

concentrating.sun.ac.za