

UNIVERSITEIT • STELLENBOSCH • UNIVERSITY jou kennisvennoot • your knowledge partner

Numerical simulation of the flow field in the vicinity of an axial flow fan

F.G. Louw, S.J. van der Spuy, T.W. von Backström

STERG Symposium 2014 Stellenbosch, South Africa 17-18 July 2014

SOLAR THERMAL ENERGY RESEARCH GROUP

Can the flow field in the vicinity of an axial fan be modeled, using a RANS/U-RANS approach?

If we can, how does it look? (especially at low flow rates)

- Impress people with colorful CFD pictures...
- RANS is computationally cheap
- If successful: Advantages for development of simplified fan models

Why?

Implementation: Modeling of large scale fan systems (ACHEs)

Introduction: ACHEs

- I/8th sector modeled (assume rotational symmetry)
- Solving: ANSYS Fluent 14
- Realizable k-ε model with Standard wall function
- Steady simulations for $\varphi > 0.137$ (13 m³/s) [$\varphi_D = 0.168$ (16 m³/s)]
- Which uses $\varphi < 0.137$ Unsteady simulations for $\varphi < 0.137$

Numerical: Computational domain

NRF

Can the flow field in the vicinity of an axial fan be modeled, using a RANS/U-RANS approach?

Depends...

"Everything should be made as simple as possible, but not simpler" - Albert Einstein

Comparison between experimental and numerical results are fair with $R_{\psi FS}^2$ =0.996 and $R_{\eta Fs}^2$ =0.966.

Yes

- Practical engineering estimation
- Further development of simplified fan model

But also, no...

No solution for φ < 0.042 (maybe due to symmetry assumption)
Scientific view: Some flow phenomena are 'missed' due to RA approach

Supervisors/Other personel

- * Late Prof. D.G. Kröger
- ✤ Funding:

- Department of M&M Engineering, Dr. vd Spuy (Eskom, GEA)
- National Research Foundation (NRF)
- * Solar thermal energy research group (STERG)

Numerical: Computational technique

×	Solver	settings:
---	--------	-----------

Setting	Steady state simulations	Transient simulations	
Discretization scheme (Gradient)	Least squares cell based	Least squares cell based	
Discretization scheme (Pressure)	PRESTO!	PRESTO!	
Discretization scheme (Other)	QUICK	QUICK	
Pressure-velocity coupling	SIMPLE	PISO	
Convergence	10-5	10 ⁻³	

Numerical: Boundary proximity analyses

S

E

Numerical: Time step independence analyses

φ	Δt , (10) ⁻³ s	ψ _{Fs}	η_{Fs}
0.168	0.5	No result	No result
	0.2	0.084	0.617
	0.1	0.084	0.618
	0.05	0.084	0.618
	0.025	0.084	0.618
0.042	0.2	No result	No result 🍸
	0.1	0.174	0.313
	0.05	0.173	0.313
	0.025	0.174	0.314

Numerical: Grid independence

- * Conducted at $\varphi_D = 0.168$
- * Rotor domain axial length: $z_r = 0.1 d_c$
 - Convergence obtained between $I(10)^6$ and $2(10)^6$ cells

Cell count	Fan static pressure coefficient, ψ _{Fs}				
		$oldsymbol{arphi}$	Cell count	ψ_{Fs}	η_{Fs}
		0.168	2.5(10) ⁶	0.084	0.627
$240(10)^3$	0119		5.5(10)°	0.084	0.617
$500(10)^3$	0.101	0.042	2.5(10) ⁶	0.174	0.313
990(10) ³	0.106		5.5(10)°	0.175	0.307
2000(10) ³	0.106				

