

UNIVERSITEIT • STELLENBOSCH • UNIVERSITY jou kennisvennoot • your knowledge partner

First Assessment of Liquid Glass for CSP Applications

B. Mesnil^a, <u>L. Heller^b & J. Hoffmann^b</u> ^aDepartment of Mechanical Engineering, ETH Zürich ^bSolar Thermal Energy Research Group (STERG), University of Stellenbosch

2nd Annual STERG SolarPACES Symposium

17 July 2014 Stellenbosch, South Africa

SOLAR THERMAL ENERGY RESEARCH GROUP

Introduction to high-temperature heat transfer fluids and storage media

State of the art HTF and storage medium

- Heat transfer fluid: Solar Salt (for central receiver)
 - *T*_{low} = 222 °C
 - *T*_{high} = 593 °C
 - receiver flux $\leq 1 MW_t/m^2$
 - receiver efficiency ≤ 90 %
- Storage medium: Solar Salt
 - Large volumetric heat capacity
 - Low cost

and storage tanks of the *Gemasolar* plant

SOLAR THERMAL ENERGY RESEARCH GROUP

R

4

- Sodium (Na)
 - *T*_{low} = 98 °C
 - *T*_{high} = 883 °C
 - receiver flux \geq 2.5 MW_t/m²
 - receiver efficiency ≥ 90 %
 - problematic reactivity
 - Not suitable for storage due to high cost and low volumetric heat capacity

- Liquid glasses
 - High volumetric heat capacity
 - Low cost
 - Inert, stable, abundant
 - Solid/viscous up to very high temperatures (~2000 °C)
- Haloglass RX
 - $T_{\rm low} = 450 \ ^{\circ}{\rm C}$
 - T_{high} = 1200 °C
 - Still viscous at $T_{low} =>$ pumping challenging

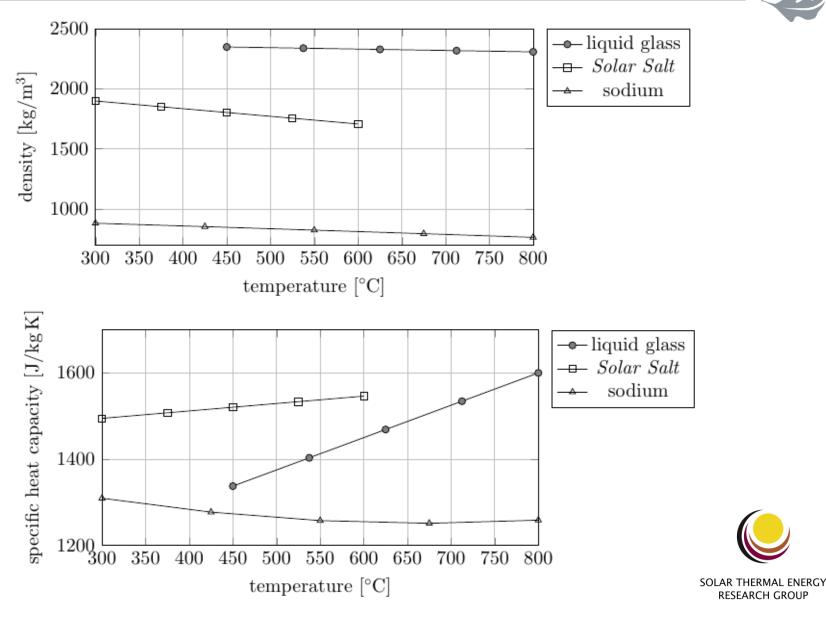
6

Thermophysical properties of liquid glass

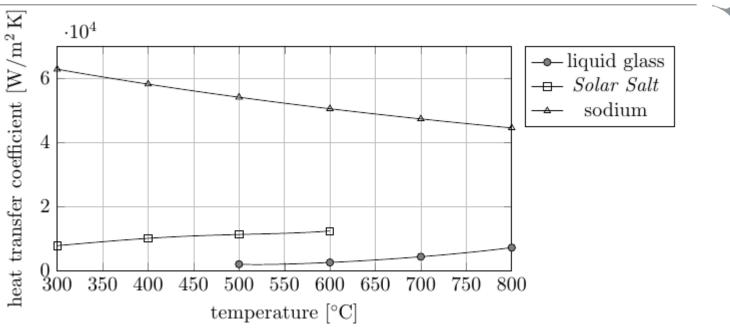
Available information on Haloglass RX

Technical Specifications


	Melting Point	450 °C
	Maximum Operating Temperature	1200 °C
	Density*	2,400 kg/m ³
	Heat Capacity at 450 °C	1.362 J/g·°C
	Viscosity at 450 °C	10,064.0 cP
	Viscosity at 600 °C	599.9 cP
	Viscosity at 800 °C	84.3 cP
	Viscosity at 1000 °C	23.6 cP
	Viscosity at 1200 °C	11.1 cP
	Thermal Conductivity**	0.8 W/m·°C
	* Calculated from individual components	


** Estimated


• Data points are extrapolated for the whole temperature range with dependencies found for other glasses (except viscosity)

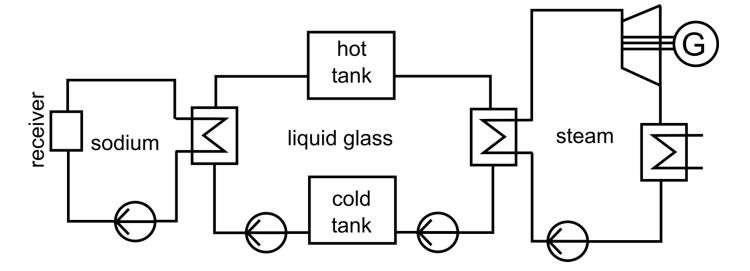


- Haloglass RX is pumpable at temperatures > 450 °C
- Even at elevated temperatures its viscosity is still orders of magnitude higher than the other HTFs'

 Data generated with identical fluid velocities (u = 3 m/s) through a tube of D_i = 1 cm

R

11


- Properties of liquid glass seem well suited for high temperature thermal storage applications
- Pumping power and freeze protection have be considered
- Heat transfer properties are not as good as for Solar Salt or sodium

- Supercritical steam cycle with $T_{high} \ge 630 \text{ }^\circ\text{C}$ and $\eta_t \ge 47 \text{ }^\circ\text{K}$
- Sodium receiver with $\eta \ge 90$ %
- Liquid glass storage system that separates sodium- and steam cycles (safety)

13

- Investigate the potential of a CSP system utilizing Haloglass RX as the storage medium or – in a direct system – also as the HTF
- Simulate a plant to determine economic viability
- Assess technical feasibility of components (especially pumps and heat exchangers)

Acknowledgements:

STERG

CRSES

University of Stellenbosch

Contact details:

Lukas Heller Solar Thermal Energy Research Group (STERG) University of Stellenbosch South Africa

LukasHeller@sun.ac.za +27 (0)21 808 4016

visit us: concentrating.sun.ac.za

References:

- <u>http://www.smartplanet.com/blog/intelligent-energy/solar-plant-generates-power-day-and-night/</u>
- Halotechnics, 2013. HaloglassTM RX, Available at: http://www.halotechnics.com/products/haloglassrx.html.

