

UNIVERSITEIT.STELLENBOSCH.UNIVERSITY jou kennisvennoot.your knowledge partner

Spiky Central Receiver Air Pre-heater (SCRAP) an introduction

Matti Lubkoll Promoters: Prof. T.W. van Backström, Prof. D.G. Kröger 17 July 2013

• External cylindrical^a and cavity^b receiver receiver

tube receiver

volumetric receiver

Tubular and volum-concentrated concentrated solar radiation solar radiation etric absorber^c: ~200 kW/m ~ 1000 kW/m T т absorber a) Stine & Geyer (2001) b) Soo Too & Benito (2013) c) Romero et al. (2002), based on Hoffschmidt (1997) inlet SOLAR THERMAL ENERGY RESEARCH GROUP inlet exit

• Efficient heat transfer from concentrated solar energy to a heat transfer fluid

$$\eta_{\rm thermal} = \frac{\dot{Q}_{\rm out}}{\dot{I}_{\rm in}}$$

- Important losses reflecting on receiver efficiency:
 - **Optical** \rightarrow Reflection
 - Thermal \rightarrow Radiation, convection, conduction
- Operating temperature, heat transfer fluid, receiver capacity (and many more) influence the optimal design for an application

An introduction to the **S**tellenbosch **UN**iversity **S**olar **PO**wer **T**hermodynamic (SUNSPOT) cycle

The SUNSPOT cycle^a

a) Kröger (2012)

Air – The challenge

	Unit	Synthetic oil	Solar Salt	steam	Air (20bar)
Minimum op. temp.	°C	292	222	250	-
Maximum op. temp.	°C	393	593	~600	l 000 (reference)
Density	kg/m ³	815-673	1900-1720	815-52.0 ^b	18.7-5.47
Specific heat cap.	kJ/(kg K)	2.37-2.73	1.49-1.55	4.19 (-10.4)-2.76	1.02-1.19
Viscosity	mPa s	0.25-0.12	3.50-1.03	0.110-0.0338	0.0221-0.0509
Therm. conductivity	W/(m K)	0.0953-0.0771	0.50-0.55	0.634-0.0952	0.0321-0.0818

• Comparison of HTF fluids for CSP^a:

• Peak flux for standard billboard receiver^c:

	Unit	Air	Steam	Molten salt
Tolerable peak flux	MW/m ²	0.15-0.2	0.4	0.8

Brief review on current press. air receivers

	DIAPR	REFOS	SOLGATE Pre-heater	SOLHYCO	SOLUGAS
Maximum op. temp.					
Pressure drop					
Optics (CPC)					
Optics (accepting surrounding field)					
Thermal efficiency					
Robustness, durability					
Cost/simplicity					
Flux density					

Excellent

Only predicted value available Good Undesired Insufficient information available

RESEARCH GROUP

Spiky Central Receiver Air Pre-heater^a (SCRAP) Concentric

spherical surface chamber (left half in section)

SOLAR THERMAL ENERGY RESEARCH GROUP

The SCRAP receiver

SCRAP tube assembly (spike) details^a: (a) tube arrangement, (b) tube geometry

9

	DIAPR	REFOS	SOLGATE Pre-heater	SOLHYCO	SOLUGAS	SCRAP
Maximum op. temp.						
Pressure drop						
Optics (CPC)						
Optics (accepting surrounding field)						
Thermal efficiency						
Robustness, durability						
Cost/simplicity						
Flux density						

Excellent

Only predicted value available

- Good
- Undesired

Insufficient information available

SOLAR THERMAL ENERGY RESEARCH GROUP

- Study of heat transfer of the internally finned tubes
- Develop a spike tip cooling solution
- Optimization of internal tube geometry for different spike length for uniform pressure drop and temperature rise
- Optimization of receiver efficiency by optimizing spike length and spike arrangement for the full receiver
- Generate key results of the SCRAP concept : Feasibility, efficiency, pressure drop, operating temperature...

Questions?

