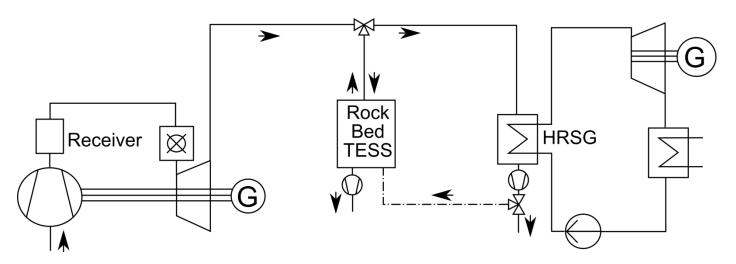


UNIVERSITEIT • STELLENBOSCH • UNIVERSITY jou kennisvennoot • your knowledge partner

Dual-Pressure Air Receiver Cycle

Lukas Heller Supervisor: Dr. Jaap Hoffmann 18 July 2013



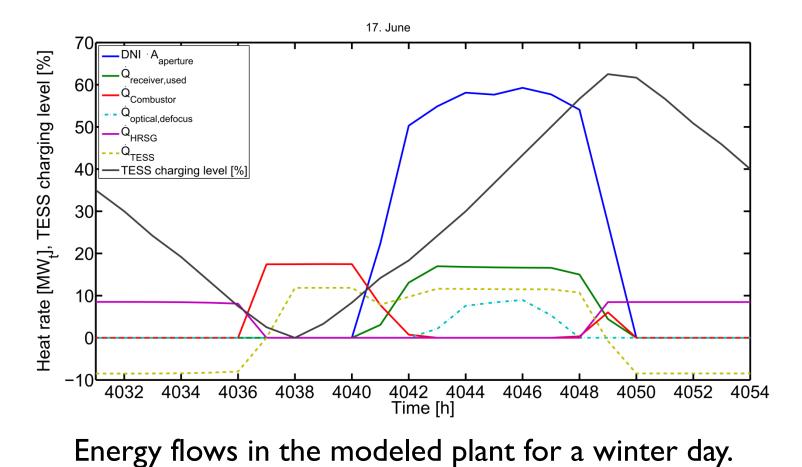
SOLAR THERMAL ENERGY RESEARCH GROUP

Goals:

- High solar share
- Demonstration of CSP's baseload capability

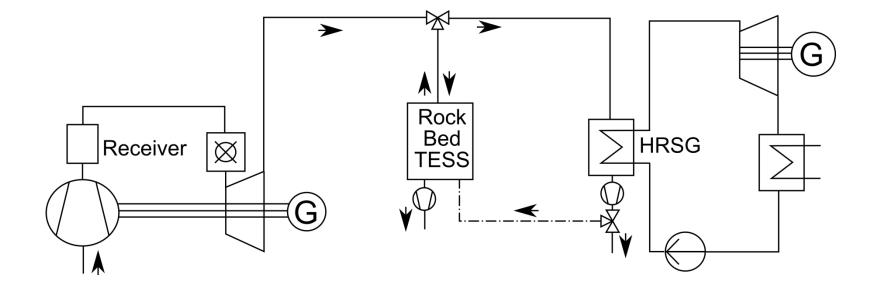
Scheme of the SUNSPOT cycle, as proposed by Kröger (2012).

2

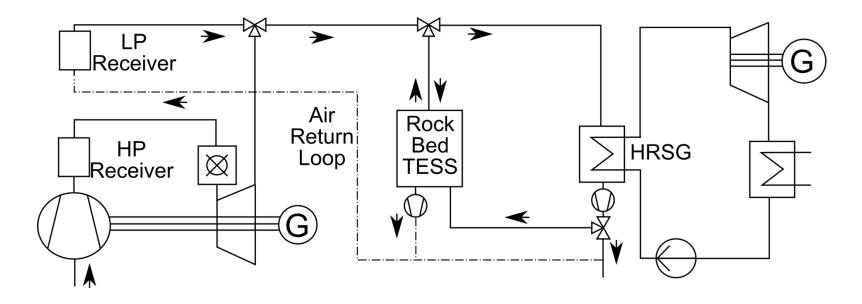

E

Parameter	Design Case I	Design Case 2	Design Case 3
Gas turbine nominal rating		5.25 MW _e	
Solar multiple		1.9	
Steam Turbine nominal rating	I.0 MW _e	1.9 MW $_{\rm e}$	I.9 MW _e
Storage Volume		785 m ³	
Fuel firing when storage depleted	No	No	Yes
Annual hybridization rate	5.2 %	5.2 %	35.9 %
Annual power generation	19.9 GWh _e	21.8 GWh _e	30.5 GWh _e
Annual time of no power generation	361 h	1838 h	0 h
Annual dumped energy through defocusing	30.8 GWh _{opt}	30.8 GWh _{opt}	28.9 GWh _{opt}

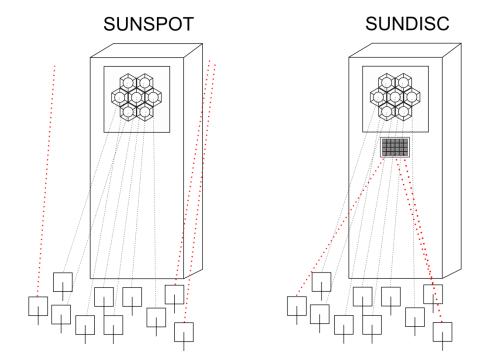
3


SUNSPOT simulation result (Design Case 3)

SOLAR THERMAL ENERGY RESEARCH GROUP

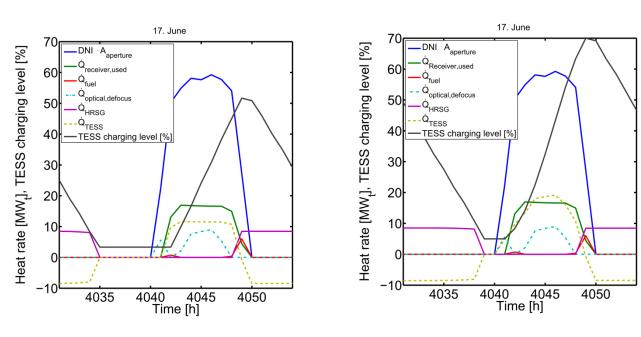


The Stellenbosch UNiversity DIrect Storage Charging Dual-Pressure Air Receiver cycle

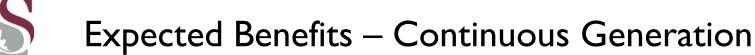

Scheme of the SUNDISC cycle.

Expected Benefits – Optical Energy

- Better utilization of available irradiation (less defocusing, alternative target).
- Utilization of larger solar multiples in a cost effective manner.


Schematic of avoided defocusing in the SUNDISC cycle.

7


Energy flows without (left) and with (right) secondary receiver system.

• Lower co-firing rate.

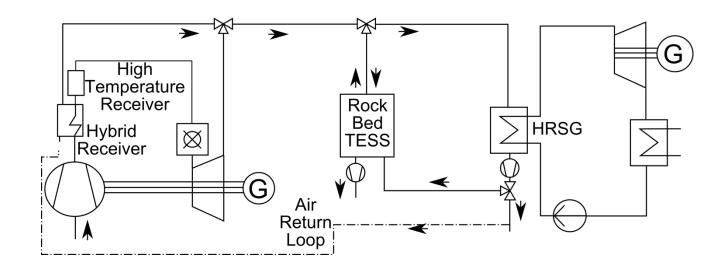
turbine.

Baseload performance/ better utilization of the steam

SUNDISC simulations

Parameter	Design Case 4	Design Case 5	Design Case 6
Gas turbine nominal rating		5.25 MW _e	
Solar multiple		1.9	
Steam Turbine nominal rating		I.9 MW _e	
LP receiver system nominal rating	0.00 MW _t	16.3 MW _t	16.3 MW _t
Storage Volume		1330 m ³	
Fuel firing when storage depleted	No	No	Yes
Annual hybridization rate	5.2 %	3.5 %	13.5 %
Annual power generation	22.1 GWh _e	24.3 GWh _e	27.2 GWh _e
Annual time of no power generation	1668 h	591 h	0 h
Annual dumped energy through defocusing	30.8 GWh _{opt}	586 MWh _{opt}	579 MWh _{opt}

SOLAR THERMAL ENERGY RESEARCH GROUP


- SUNDISC cycle is **decoupled** and can easily be **adjusted** for differing demand profiles
- **Baseload characteristics** of power generation achievable
- Cost-efficient utilization of high solar multiples
- **High efficiency** for the combined cycle
- High solar share
- Limited hybridization for peak hours conceivable
- Distributed receiver system could benefit solar field efficiency

- Decoupled low- and high-pressure receiver systems
- Hybrid-pressure receiver system (preheater or up to max. temperature)

