Solar Tower Technology - Status and R&D at DLR Dr. Reiner Buck German Aerospace Center (DLR)

April 10, 2014 Stellenbosch University, South Africa

Knowledge for Tomorrow

DLR German Aerospace Center

- → Research Institution
- → Space Agency
- Project Management Agency
- → 34 research institutes and facilities, all over Germany
 - → 820 Mio € for Research & Operation
 - 7,700 employees
 - > 3,000 scientists
 - > 500 doctoral students and junior scientists

Solar Research at DLR

Department "Point Focus Systems"

- institutional funding: R&D with long term perspective
 - current focus: direct absorption receivers and systems
- third party funding: short- to mid-term perspective
 - technology transfer and continued development
 - component development
 - tool development
- 25 staff members, budget 2013: 3.5 Mio €

Solar Research Test Facilities (Cologne)

DLR owns Solar Tower Test Facility Jülich

owned by CIEMAT; permanent delegation of DLR Solar Research

Advantages of Concentrating Solar Power Plants

- thermal storage lowers LCOE
- high local content possible

CSP Characteristics

solar tower:

- \Rightarrow higher concentration
- ⇒ higher process temperature
- ⇒ higher solar-to-electric efficiency
- \Rightarrow reduced collector area

CSP Technology Perspective

Solar Resource in South Africa

- annual DNI level has strong \bullet influence on LCOE
- DNI levels > 2000 kWh/m²a • are required
- South Africa has excellent DNI resources in several regions

Scheme of a Solar Tower Plant

Operational Commercial Solar Tower Plants

Overview

- PS10/20: near Seville (Spain), 10 + 20MW, ~ 1h storage
- Gemasolar: near Seville (Spain), 20MW, 15h storage
- Ivanpah: near Las Vegas (USA), 377MW, no storage
- Sierra SunTower: Lancaster (USA), 5MW, no storage

Operational Solar Tower Plants: Gemasolar (Torresol)

Power rating	19.9MW		
Annual production	110 GWh/a		
Capacity factor	74%		
Heat transfer fluid	molten salt		
Storage	molten salt, 15h		
Power block	steam cycle, wet cooling		

Operational Solar Tower Plants Ivanpah (Brightsource)

Power rating	377MW		
Annual production	1'079 GWh/a		
Capacity factor	33%		
Heat transfer fluid	Water/steam		
Storage	-		
Power block	steam cycle, dry cooling		

Future Solar Tower Plants

- Crescent Dunes, USA (SolarReserve)
 - 110MW, 10h storage
 - under commissioning
- Khi Solar One, South Africa (Abengoa)
 - 50MW, 2h storage
- Cerro Dominador, Chile (Abengoa)
 - 110MW, 17.5h storage
- Ouarzazate, Morocco
 - 110MW, storage
 - bidding process underway

Economics of Solar Tower Systems

- relevant parameter is LCOE [\$/kWh], not specific cost [\$/kW]
- additional value from dispatchability and security of supply
 - CAPEX is dominant cost fraction
 ⇒ financing conditions important!
 - actual LCOE: 0.16 ... 0.36 US\$/kWh
 - 2020 LCOE: 0.08 ... 0.16 US\$/kWh
 - LCOE depends on
 - solar resource
 - financing

(all cost in 2010 US\$)

Summary

Solar Tower Technology:

- ascending renewable power technology
- firm capacity with high capacity factors
- significant cost reductions expected
 - technological development
 - improved manufacturing
 - increased maturity (financing)
- high local content achievable
- also suitable for HT process heat

R&D Activities at DLR Solar Research Department "Point Focus Systems"

Goal: Cost Reduction of CSP Plants (Solar Tower, Dishes)

- performance optimization
 - heliostat field, receiver, system
- cost reduction
 - component cost, O&M cost

R&D topics:

- receivers
- heliostats
- system aspects
- control
- simulation tools

HelFer

Cost Optimized Heliostat Production

Aim

Cost reduction of heliostats by complementary development of production concepts and heliostat structures

Status

- Heliostat developed
- Design of central production unit almost finished
- Basic concept for integration of qualification methods in production process (photogrammetry and deflectometry) developed

Partners

- Kraftanlagen München GmbH
- Heidelberger Druckmaschinen AG

AutoR

Autonomous Light Weight Heliostat With Rim-Drives

Aim

Partners

- Institute of

Harburg

Telematik,

TU Hamburg

Cost reduction of heliostats by about 30% through complementary approaches

- Trinamic Motion

Control GmbH

AutoR Autonomous Light Weight Heliostat With Rim-Drives

Source: G. Kolb et al., Heliostat Cost Reduction Study, 2007

AutoR

Autonomous Light Weight Heliostat With Rim-Drives

Cost reduction potential of drives and steel structure (cost estimations):

14m ²	BSE (Reference)		Rim Drive	е
Elevation drive	80€	6 €/m²	30€	2 €/m²
Azimuth drive	300€	21 €/m²	30€	2 €/m²
Central tilting device	65€	5 €/m²	40 €	3 €/m²
Rims, guidance	0€	0 €/m²	100€	7 €/m²
Locking devices	0€	0 €/m²	20€	1 €/m²
Mirrors	168€	12 €/m²	168€	12 €/m²
Mirror support structure	400€	29 €⁄m²	300€	21 €/m²
Pylone and foundation	240€	17 €/m²	240€	17 €/m²
Control, wiring, installation	600€	43 €/m²	600€	43 €/m²
total (without impact of optics)	1853 €	132 € m²	1528 €	109 ∉ m²

AutoR Autonomous Light Weight Heliostat With Rim-Drives

First prototype almost finished

R&D on Receiver Technologies

- development / technology transfer
 - open volumetric air receiver
 - pressurized volumetric air receiver
- development of receivers with liquid HTF
 - molten salt receivers
 - liquid metal receivers
- innovative concepts: direct absorption
 - particle receivers

Tower Plant with Open Volumetric Air Receiver Solar Tower Demonstration Plant Jülich, Germany

Open Volumetric Air Receiver

- improvement of volumetric absorber structures
- optimization of air receiver system
- dynamic simulation of receiver
- aim point optimization
- support of market introduction
 - scalable design
 - design of prototype plants
 - know-how transfer

Pressurized Volumetric Air Receiver

- volumetric absorber structures:
 - metallic wire grid (T < 800°C)
 - ceramic foam/matrix (T > 800°C)
- transparent quartz window
- tested at Plataforma Solar de Almeria:
 - temperature up to 1030°C
 - pressure up to 15bar
- modular design with secondary concentrator

Tube Receiver Design and Analysis Example: SOLUGAS receiver

goa Solar New Technolo

SOLUGAS Tube Receiver in Solar Gas Turbine System

Receiver component development - antireflective coated segmented receiver window

LIMTECH: Systems using Liquid Metal as HTF

- large temperature range in liquid phase
- chemically stable

- high heat transfer coefficient
- \Rightarrow receiver with higher flux density,
 - i. e. smaller receiver
- \Rightarrow higher receiver efficiency
- \Rightarrow lower levelised costs of electricity
- thermal storage concept?
- corrosion?
- cost?

Fluid	Solar Salt	Na	LBE	Sn
Tmelt [°C]	220	98	125	232
Tboil [°C]	565	883	1553	2687

(at 1bar)

Particle Receiver Power Plant

- Solid ceramic particles as absorber, heat transfer and storage material

Advantages:

- Direct absorption
- No freezing
- No decomposition
- High temperatures
- Inherent Storage
- Low Levelized Electricity Costs

Particle Receiver Concepts

- direct absorption concept \Rightarrow high efficiency
- different receiver approaches:
 - falling film receiver
 - centrifugal receiver
 - entrained particles

Falling Particle Receiver in Face-Down Cavity

Particle Receiver with Smart recirculation

- different recirculation strategies studied
- MATLAB and CFD model for "smart" recirculation predict higher efficiency
- further efficiency increase with more recirculations predicted
- gain in efficiency flattens → additional effort for more recirculations might not be justified

The Centrifugal Particle Receiver (CentRec)

10kW Prototype in Laboratory Scale

CentRec: Experimental Results

- Measured wall temperatures indicate homogeneously distributed particle film
- Increasing temperature from receiver inlet (z/L = 1) to outlet (z/L = 0) demonstrates gradual heating of particles
- Particle outlet temperature of about 900°C is reached
- film can be controlled by rotation speed

Solar-hybrid Microturbine System

Turbec T100 microturbine, P_{el} =100 kW 4.5 bar_{abs}, 950°C Turbine inlet temperature 600°C recuperator outlet temperature $\eta \sim 31\%$ (standard unit)

Solar-hybrid Microturbine System with Integrated Solar Particle Loop

- replaces standard recuperator with particle loop recuperator
- potential for significant cost reduction
- challenge: direct contact HX 1
 - pressurized
 - gate for particles

SMILE Project

- Installation of two solar-hybrid microturbine systems (100kW_{el}) in Brazil
- System test with metallic tube receiver for 800°C outlet temperature at PSA (>100h)
- Partners in Brazil: FUSP, SOLINOVA

SOLUGAS Project

- demonstration of a pre-commercial solar-hybrid gas turbine system
- power level: 4.6 MW_e, solar air preheating to 650°C/800°C
- partners: Abengoa, GEA, Turbomach, DLR, NEAL
- co-funded by EC under FP7
- site: Sevilla

DLR tasks:

- receiver design
- field layout

in preparation:

- receiver temperature increase to 950°C

Solarized Gas Turbine Cycles

- several configurations:
 - Combined Cycle
 - recuperated cycles
 - intercooling
- solar-hybrid gas turbine cycles
 - high turbine inlet temperature:
 ⇒ moderate solar share
 - low turbine inlet temperature:
 ⇒ high solar share (950°C)
 - regenerator storage optional
- performance prediction:
 - intercooled Brayton cycle:
 - performance better or equal to MS system
 - Combined Cycle similar MS

Overview of DLR CSP simulation tools

• DLR simulation tools cover all levels of CSP simulation

Detailed System Performance Simulation using Ebsilon®

- "All in One" solution for detailed power plant modelling
- for development, acquisition und planning of all kinds of power plants and thermodynamic processes
- design and development of single components, subsystems and complete systems
- development of new solar library EbsSolar (steag and DLR):
 - thermodynamic modelling and yield analysis (e.g. annual yields)
 - components of solar thermal power plants (Dialog for time series calc., transient calc. for energy storage, fluid properties for solar applications)
 - 2010: library for line focussing systems
 - -Parabolic Trough
 - -Linear Fresnel
 - 2011: library for Solar Tower systems
 - currently more than 70 licences of EbsSolar are used

<u>steag</u>

System Simulation: Workflow for Solar Towers Annual Yield Calculation

Solar System Layout Visual HFLCAL: Heliostat Field Layout

- fast optimization of heliostat field, receiver and tower

Component Level: High Precision Ray Tracing (STRAL)

- fast and accurate ray tracing of concentrator systems (tower, trough, ..)
- can use measured heliostat surface data
- aim point optimization
- tool coupling features
 - best simulation environment for specific modeling problems
 - exchange data during co-simulation via network
 - MATLAB® / Simulink®; Dymola©; LABVIEW©; Excel®

Tool Coupling Example: Cloud Passage

Himmelsrichtung: 0° | Position: x = -174.0 y = 0.0 z = 168.0 | Sichtpunkt x = 0.0 y = 0.0 z = 100.0

Aim Point Optimization

- STRAL (Solar Tower Ray-Tracing Laboratory):

- fast ray-tracer for precise flux calculation
- based on heliostat deflectometry data
- assignment of heliostats to aim points is a combinatorial problem of dimension D = n_A^{n_H} ⇒ use ant colony optimisation meta-heuristic
- concept proven theoretically by simulation
- 2014: validation at solar tower Jülich
- applications:
 - during design phase
 - operation assistance system
 - integrated in flux/temperature control unit

Integrated Solar Tower System Layout

- integrated tool under development: combination of
 - field layout (heliostat positions)
 - aim point distribution
 - receiver design (e.g. FEM stress analysis)

Dynamic Modelling of Receivers

- dynamic modelling of an open volumetric air receiver in Dymola/Modelica for analysis of transient operation
- dynamic modelling of a tubular salt receiver in Dymola/Modelica for analysis of start-up & shut-down, cloud passage, fill&drain
- dynamic calculation of flux density distribution on receiver surface by STRAL
- combination of Dymola models with Simulink for modelling of operation & control structures

Co-Simulation of total plant behaviour

• philosophy: use best suitable simulation tool for each component

High-temperature storage with solid media

Regenerator storage, Packed bed storage with hot gas HTF

- Thermo-mechanical aspects (thermal ratcheting): particle-discrete models to calculate inter-particle forces
 ⇒ design of protective measures
- Uniform flow distribution with "low pressure-loss designs": CFD-based prediction of pressure loss and flow

Particulate storage and heat exchangers

 CFD-multiphase models for the prediction of flow field and thermal heat exchange in high-temperature granular flows

Thank your for your attention!

