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ABSTRACT 

SolarGIS is a global database of solar resource and 
meteorological parameters, developed and operated by 
GeoModel Solar. This database is updated daily by real-time 
satellite, atmospheric and meteorological data inputs. The aim 
of presented work was accuracy enhancement of solar resource 
data for South Africa, Lesotho and Swaziland. This was 
achieved by regional adaptation of SolarGIS solar model with 
data measured at fourteen high-standard solar measuring 
stations sourced by Eskom, GeoSUN Africa, SAURAN, 
STERG and Ripasso Energy.  

The accuracy-enhancement procedure is based on 
correlation of the ground measurements with the satellite-based 
SolarGIS model and determination of correction coefficients 
for model inputs. Use of these coefficients reduced systematic 
deviation of the input aerosol data, which is key factor 
determining the model accuracy in Southern Africa. The user 
uncertainty of the longterm estimate based on adapted data is in 
the range of ±5% to ±7.5% for DNI, and ±3% to ±4% for GHI. 
The model now delivers more accurate high-resolution solar 
resource time series, which helps reducing financial risk and 
improving engineering quality of the solar power plants.  

The presented maps show longterm yearly averages of 
Direct Normal Irradiation (DNI) and Global Horizontal 
Irradiation (GHI) with 1-km spatial resolution. They are 
calculated by aggregation of sub-hourly modeled time series, 
representing a period 1994 to 2013. The maps are accessible 
from http://www.sauran.net/. High resolution data can be 
accessed from http://solargis.info. 

NOMENCLATURE AND ACRONYMS 

CFSR Climate Forecast System Reanalysis 
GFS Global Forecast System  
MACC-II Monitoring Atmospheric Composition and Climate 
SAURAN Southern African Universities Radiometric Network 

 

 
AOD [-] Atmospheric Optical Depth 
Bias [W/m2 or %] Systematic model deviation 
DNI [kWh/m2] Direct Normal Irradiation  
DIF [kWh/m2] Diffuse Horiz;ontal Irradiation  
GHI [kWh/m2] Global Horizontal Irradiation  
KSI [-] Kolmogorov-Smirnoff Index 
RMSD [W/m2 or %] Root Mean Square Deviation (random 

deviation) 

INTRODUCTION 

Two principal approaches are used for monitoring solar 
resource: (i) calculation based on models using satellite and 
atmospheric data, and (ii) dedicated ground-based measuring 
equipment (Table 1). The fundamental difference between the 
modelled data and ground measurements is that while the 
model output is continuous in time and space (defined by the 
spatial resolution and sampling rate of the satellite and 
atmospheric data), the solar sensor mounted at a meteorological 
station provides pinpoint high-frequency measurements. 
Combination of both approaches is used for generating high 
quality and low uncertainty site-specific time series. 

Professional monitoring assumes use of high accuracy 
measurements, consistent operation and maintenance of the 
equipment and rigorous data quality control. Low accuracy 
instruments and loose operation and maintenance practices 
deliver dubious outputs and data with high uncertainty. 

Due to data inputs and algorithms, the satellite-based solar 
models have limited ability to accurately represent high-
frequency changes of solar resource in a specific site. A natural 
mismatch occurs when comparing instantaneous values from 
the model and ground instrument, mainly during intermittent 
cloudy weather and changing aerosol load. Nearly half of the 
hourly Root Mean Square Deviation (RMSD) for GHI and DNI 
can be attributed to this mismatch, which is also known as the 
“nugget effect” [1]. 
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Table 1 Satellite and ground measured data – feature comparison 

 Outputs from the 
SolarGIS satellite- 
based model 

Ground 
measurements 

Principle advantage Spatial (map) data 
Long history 

Site-specific data 

Time resolution 15 and 30 minutes Seconds to minutes 
Time coverage Up to 21+ years Recent (rarely 

longer history) 
Spatial resolution 3 to 7 km satellite 

35 km water vapour 
125 km aerosols 

Less than 1 sq. 
centimeter 

Radiometric and 
positional stability 

High (based on 
preprocessing) 

High (if calibrated 
and systematically 
controlled) 

Continuity of 
measurements 

High (occasional gaps 
are filled by inteligent 
algorithms) 

Good (if well 
maintained) 

 
Satellite images have resolution and information content 

that allow describing optical transmissivity of clouds only to 
limited extent. The coarse spatial resolution of aerosol and 
water vapour data does not allow capturing local patterns of the 
state of atmosphere. Thus limited spatial and temporal 
resolution of satellite and atmospheric data does not allow 
describing the inter-pixel variability in cases, where one pixel 
represents diverse natural conditions (e.g. fast changing 
patterns of fog, clouds, shading, land cover in mountains, 
urbanised areas or along the coast). Especially modelling DNI 
is very sensitive. The relation between uncertainty of global 
and direct irradiance is nonlinear: a negligible error in global 
irradiance may have high counterpart in direct irradiance. 

SATELLITE-BASED MODEL 

In this study, time series from global solar radiation model 
SolarGIS are used [2, 3, 4]. SolarGIS includes models 
parameterizing atmospheric conditions and transmissivity by 
clouds. Sequentially, other models calculate solar irradiance 
components, deal with their transposition and terrain effects.  

Simplified SOLIS atmospheric model [5] calculates clear-
sky irradiance (i.e. irradiance without considering clouds) from 
three parameters that determine geographical and temporal 
variability of atmospheric conditions: 
• Aerosols, represented by Atmospheric Optical Depth 

(AOD). In SolarGIS, AOD is derived from the global 
database MACC-II [6, 7]. The model uses daily aerosols to 
simulate the instantaneous DNI and GHI. Compared to 
approaches based using only monthly-averaged AOD, 
daily values reduce uncertainty, especially in regions with 
high and variable aerosol concentrations [8, 9]. 

• Water vapour is also highly variable, though it has lower 
impact on variability and reduction of DNI and GHI. Daily 
data are derived from CFSR and GFS databases for the 
whole historical period up to the present time [10, 11]. 

• Ozone has negligible influence on broadband solar 
radiation and it is considered by the model as a constant. 

The SolarGIS cloud model estimates cloud attenuation of 
global horizontal irradiance. Data from the meteorological 
geostationary satellites are used to calculate a cloud index that 
relates radiance of the Earth’s surface, recorded by the satellite 
in several spectral channels with an effect of optical attenuation 
by clouds. For Europe, Africa and Middle East, Meteosat 
satellite data are used [12]. Conceptually, the model is based on 
the modified Heliosat-2 calculation scheme [13], however it has 
a number of improvements dealing with identification of 
albedo, presence of snow, fog, ice, especially in tropical zone, 
high latitudes and in a complex terrain. Other support data are 
also used in the model, e.g. altitude and air temperature. 

To calculate Global Horizontal Irradiance (GHI) for all 
atmospheric and cloud conditions, the clear-sky global 
horizontal irradiance is coupled with cloud index. From GHI, 
other solar irradiance components (direct, diffuse and reflected) 
are derived. Direct Normal Irradiance (DNI) is calculated by 
modified Dirindex model [14]. Model for simulation of terrain 
effects (elevation and shading) based on high resolution altitude 
and horizon data. Model by Ruiz Arias is used [15] to achieve 
enhanced spatial representation: the information based on the 
satellite resolution (3 to 4 km) is disaggregated to the resolution 
of 1 km in this project. 

GROUND MEASUREMENTS 

Solar measurements from fourteen meteorological sites 
were used for reducing the uncertainty of the SolarGIS model 
(Table 2). The measurement campaign has been conducted by 
four subjects: GeoSUN Africa, STERG, SAURAN and Eskom. 

 
Table 2 Ground based measurements available for regional adaptation 

ID Site name Latitude, Longitude Altitude 
[m a.s.l.] 

1 Aggeneys -29° 17' 40", 18° 48' 56" 791 

2 Bloemfontein -29° 06' 39", 26° 11' 06" 1491 

3 Durban -29° 52' 16", 30° 58' 37" 150 

4 Graaff-Reinet -32° 29' 08", 24° 35' 09" 660 

5 Helios -30° 30' 04", 19° 33' 38" 905 

6 Lephalale -23° 35' 53", 27° 34' 11" 886 

7 Port Elizabeth -34° 00' 31", 25° 39' 55" 35 

8 Pretoria -25° 45' 11", 28° 13' 43" 1410 

9 Sasolburg -26° 46' 40", 27° 50' 14" 1468 

10 Sonbesie -33° 55' 41", 18° 51' 54" 144 

11 Sutherland -32° 13' 19", 20° 20' 52" 1318 

12 Upington -28° 30' 19", 21° 10' 07" 810 

13 Vanrhynsdorp -31° 37' 03", 18° 44' 18" 130 

14 Vryheid -27° 49' 41", 30° 30' 00" 1274 

 
At all stations 1- and 5- minute GHI and DNI data are 

measured by secondary standard pyranometers and first class 
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pyrheliometers mounted on a tracker. The measuremetns relate 
to years 2013 and 2014 or earlier, and at least 12 months of 
measurements were available at every station. 

Prior to correlation with satellite-based time series, the 
ground-measured irradiance was quality-controlled by 
GeoModel Solar. Quality control (QC) was based on methods 
defined by SERI QC procedures, Younes et al. [16, 17] and 
also the in-house tests were used. The measurements were 
inspected also visually, mainly for identification of shading and 
other data error patterns. The most typical errors identified in 
the data are: missing values, morning or evening shading and 
short periods of inconsistency between the solar components. 
The data values with identified issues are flagged and excluded 
from the regional adaptation of the SolarGIS model. 

REGIONAL ADAPTATION 

By regional adaptation we aim to reduce bias (systematic 
deviation), RMSD (random deviation) and KSI (difference 
between frequency distributions of the measured and satellite 
data). The comparison of raw SolarGIS data with ground 
measurements shows good fit for various weather situations: 
cloudy and cloudless skies as well as for intermittent 
cloudiness. Bias showing systematic underestimation or 
overestimation of the daily profiles of cloudless conditions 
indicates that correction is needed in the clear-sky atmospheric 
model, especially in the aerosol data input. Other source of 
systematic deviation comes from the cloud model, however it 
has lower impact on the model results. Therefore we focused on 
accuracy improvement of Aerosol Optical Depth (AOD) 
derived from the MACC–II aerosol database. The method was 
conducted in two steps: 
• Determination of AOD correction coefficients for 

individual ground stations in order to reduce the systematic 
deviation of the modelled data compared to ground 
measurements. 

• Adaptation of AOD based on site-specific correction 
coefficients was extended from individual sites to the 
whole territory of South Africa by spatial interpolation. 

Reduction of systematic deviation at meteorological stations 
The satellite data is available in 15- and 30-minute time 

step; ground-measured data are available in different time steps. 
To reduce the conceptual difference of point and satellite pixel 
measurements, all the measures are calculated using aggregated 
data in hourly time step.  

Deviations between original model data and ground 
measurements were analysed for each site with focus on: 
• Deviation for the whole period of available measurements 

seen as a systematic feature and as seasonal patterns; 
• Deviation patterns for various weather situations, 

especially for cloudless sky; 
• Differences in the cumulative distribution of hourly values 

between the modelled and measured data. 
The monthly AOD correction factors are calculated from 

comparison of measured and modelled data for cloudless sky 
[18]. The correction factors were harmonized to achieve 
smooth month-by-month changes; in this phase, the 

neighbouring sites are also compared in a spatial context. Next, 
the satellite-based model was recalculated with correction 
factors and validated. Larger residuals are removed in the 
second iteration of this procedure. Even if bias was minimized, 
some mismatch between the measured and modelled data is still 
present, mainly in the frequency distribution of values. 

For each site the adaptation procedure results in a set of 
monthly correction factors, which respect seasonal and spatial 
context of the data. The aerosol adaptation method removed 
major source of discrepancies between satellite data and ground 
measurements. Important benefit of this approach is that it 
maintains the consistency of GHI, DNI and DIF components. 

Spatial interpolation of correction coefficients 
The objective of the second step was to extend the 

correction factors, identified at individual sites, to the territory 
of South Africa. A complex interpolation technique, 
incorporating orographic barriers, was used. The algorithm 
assumes that spatial distribution of aerosols is controlled by air 
mass movement influenced by orography (digital terrain 
model). The correction factors were interpolated separately for 
each month. Finally, aerosol correction layers were used for 
regional re-calibration of the AOD input and recalculation of 
the 20 years data for the territory of South Africa.  

RESULTS AND VALIDATION 

The regional-adaptation of the SolarGIS model removed 
large part of systematic mismatch between the satellite-based 
data and ground measurements.  

 
Table 3 Direct Normal Irradiance: bias and KSI before and after 
regional model adaptation 

Meteo station Original DNI  After regional adaptation 

  Bias KSI   Bias KSI 

  [%] [-]   [%] [-] 

Aggeneys -4.9 203  0.3 99 

Bloemfontein -5.2 120  -0.1 43 

Durban -9.7 187  -0.4 80 

Helios -4.9 270  0.6 167 

Lephalale -2.4 119  0.0 77 

Port Elizabeth -2.0 75  1.8 64 

Pretoria 0.0 51  0.2 48 

Sasolburg -0.8 77  -0.2 70 

Stellenbosch -4.2 292  0.5 196 

Sutherland -2.8 91  0.3 59 

Upington -9.2 302  -0.7 89 

Vryheid 1.3 88  0.4 89 

Vanrhynsdorp -4.6 162  -0.1 114 

Graaff-Reinet -5.5 131   0.1 79 

Mean -3.9 155   0.2 91 

St. deviation 3.1     0.6   
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In semi-arid and desert conditions, the clouds have lower 
importance and it is mainly AOD, which determines the 
mismatch between ground-measured and satellite data. 
Therefore more accurate results (reduction of bias, RMSD and 
KSI) were achieved by adaptive adjustment of the AOD values.  
 
Table 4 Global Horizontal Irradiance: bias and KSI before and after 
regional model adaptation 

Meteo station Original GHI  After regional adaptation 

  Bias KSI   Bias KSI 

  [%] [-]   [%] [-] 

Aggeneys -2.1 50  -1.3 38 

Bloemfontein -1.6 26  -0.7 14 

Durban -3.3 70  -1.7 54 

Helios -2.1 52  -1.3 43 

Lephalale 0.6 22  0.9 24 

Port Elizabeth -2.3 21  -1.7 17 

Pretoria 1.1 20  1.1 21 

Sasolburg 4.3 76  4.4 78 

Stellenbosch -1.2 49  -0.6 36 

Sutherland -2.5 44  -2.1 37 

Upington -1.6 38  -0.4 22 

Vryheid 0.7 13  0.5 13 

Vanrhynsdorp -0.8 23  -0.1 19 

Graaff-Reinet -0.3 11   0.5 11 

Mean -0.8 37   -0.2 31 

St. deviation 2.0     1.7   

 
 

 
Figure 1 Map of differences between original and adapted DNI 

 
Figure 2 Accuracy enhanced DNI map 

 
At the level of individual sites, mean bias of site-adapted 

values from the ground measurement is close to zero (typically 
within ±1% for DNI, and ±2% for GHI), which corresponds to 
the expected uncertainty of the measuring instruments (Tabs. 3 
and 4). RMSD and KSI parameters are also reduced (due to 
limited space, RMSD is not shown in this paper). The only 
exception from this trend is found in Sasolburg meteo station, 
where GHI deviation exceeds the expected uncertainty. This is 
probably an effect of residual measurement errors that were not 
identified in data quality control.  

 
Figure 3 Map of differences between original and adapted GHI 
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Figure 4 Accuracy enhanced GHI map 

 
After regional adaptation of the model was validated, the 

model was recalculated and full time series representing a 
period of 1994 to 2013 were aggregated into longterm DNI and 
GHI yearly averages (Figs. 1 to 4). Adaptation of the model 
helped reducing systematic and also random deviations at all 
sites. The maps of correction effect on GHI and DNI shows 
difference between regionally adapted and original data.  

UNCERTAINTY OF SOLAR RESOURCE MAPS 

SolarGIS model shows robust and uniform behaviour in 
South Africa, which is consistent with our experience 
worldwide [4, 19]. Validation shows bias and RMSD within 
expected range of values. Due to higher computational 
complexity, bias for DNI is approximately two times higher 
compared to GHI.  

For practical use, the statistical measures of accuracy are 
converted into uncertainty, which better characterizes 
probabilistic nature of possible errors. Uncertainty is based on 
the assumption of normal distribution of solar radiation values, 
which has to be considered as simplification given by limited 
availability of data and current knowledge.  

Typically, the best estimate of GHI and DNI longterm 
yearly average is required, often denoted as P50 value (in case 
of normal distribution equivalent to median). Besides P50, 
project developers, technical consultants and finance industry 
inquire about uncertainty of longterm estimates [20]. P90 
values are calculated where the uncertainty is calculated for 
80% probability of occurrence, thus P90 value indicates an 
estimate at 90% probability of exceedance. Often other 
probabilities of exceedance also are requested (e.g. P75, P95). 

The user’s uncertainty Uncertuser in this study, denoted also 
as combined uncertainty, is calculated from the uncertainty of 

the SolarGIS model estimate Uncertmodel, the uncertainty of the 
ground measurements Uncertmeas and from the interannual 
weather variability Uncertvar: 

 
𝑈𝑛𝑐𝑒𝑟𝑡!"#$ =    𝑈𝑛𝑐𝑒𝑟𝑡!"#$%! + 𝑈𝑛𝑐𝑒𝑟𝑡!"#$! + 𝑈𝑛𝑐𝑒𝑟𝑡!"#! 

 
Uncertainty of the model and measurements 

The accuracy of SolarGIS model is mainly determined by 
parameterization of the atmosphere (especially the qualitative 
and quantitative properties of aerosols) and by cloud model. 
The uncertainty of regionally adapted satellite-based DNI and 
GHI is determined by:  
1. Parameterization and adaptation of numerical models 

integrated in SolarGIS for the given data inputs and their 
ability to generate accurate results for various geographical 
and time-variable conditions: 
• Data inputs into SolarGIS model: accuracy of 

Meteosat satellite data, MACC-II aerosols and 
GFS/CFSR water vapour 

• Solis clear-sky model and its capability to properly 
characterize different state of the atmosphere 

• Simulation accuracy of the SolarGIS cloud 
transmittance algorithms, being able to properly 
distinguish different state of various surface types, 
albedo, clouds and fog 

• Diffuse and direct decomposition  
• Terrain shading and disaggregation model  

2. Uncertainty of the ground-measurements, which is 
determined by: 
• Accuracy of the instruments 
• Maintenance practices, including sensor cleaning, 

service and calibration 
• Data post-processing and quality control procedures.  

SolarGIS model is compared to the high-quality 
measurements. All measuring stations are equipped with high-
quality sensors, and in general the accuracy of measured data 
passing quality control is good. In this study we estimate 
SolarGIS model uncertainty Uncertmodel relative to the 
measurements from high-standard instruments. Estimate of the 
yearly uncertainty of ground measurements (Uncertmeas) is a bit 
subjective. According to [21], for carefully maintained 
instruments, the yearly uncertainty of 1% for first class 
pyrheliometers and 2% for secondary standard pyranometers 
can be achieved. Although, it is known [22] that the uncertainty 
of instruments can be higher in challenging operating 
conditions. Most of analyzed ground-measurements in South 
Africa, after quality control, are of good quality and their 
uncertainty is included in the estimate of the model uncertainty. 

The uncertainty of SolarGIS model before and after regional 
adaptation is shown in Tab. 5, and its geographic distribution is 
discussed in Tab. 6. For comparison, best achievable 
uncertainty of the satellite-based longterm estimates is 
approximately 2.5% for GHI and 3.5% for DNI (assuming 
uncertainty at P90). This level of uncertainty can be achieved if 
the following conditions are met: 
• Best available solar models and approaches are applied 
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• Input data (satellite, atmospheric, etc.) are quality 
controlled and homogenized 

• Satellite model is adapted for local geography by high 
quality ground measurements, available for a period of at 
least 3 to 4 years 

• Ground measurements are available for GHI, DNI and 
DIF, measured by high-standard meteorological 
instruments and equipment, applying best operation and 
maintenance practices. 

 
Table 5 Uncertainty of the SolarGIS model estimate for annual GHI 
and DNI – original values, and after adaptation. As a reference, the 
best-achievable values are shown for site-adapted satellite data. 

DNI Lower Higher Very high 
Original data 8.0 9.5 11.0 
After adaptation 5.0 5.8 7.4 
Best-achievable 3.5 - - 
GHI Lower Higher Very high 
Original data 3.5 4.0 5.0 
After adaptation 3.0 3.5 4.0 
Best-achievable 2.5 - - 

 
Table 6 Geographic distribution of the model uncertainty  

Uncertainty of DNI and GHI 
Lower Approximately 80% of country 
Higher  Coastal zone. Regions with higher occurrence and 

variability of clouds and fogs. Urban and industrial 
areas. Fast changing terrain and landscape (land cover). 
For DNI, higher variability of aerosols triggers higher 
uncertainty. 

Extreme Large urban and industrial areas, high mountains and 
complex geographies 

 
Uncertainty due to weather variability 

Weather changes in cycles and has also stochastic nature. 
Therefore annual solar radiation in each year can deviate from 
the long-term average in the range of few percent. The 
uncertainty of DNI and GHI prediction is highest if only one 
single year is considered, but when averaged for a longer 
period, weather oscillations even out and approximate to the 
long-term average.  

The range of values, assuming possible variation for any 
single year in South Africa is between ±2.9% and ±9.9% for 
DNI and ±1.3% to ±5.9% for GHI. The uncertainty due to 
weather variability decreases over the time with square root of 
the number of years, thus assuming data covering 20 years, the 
range of uncertainty is reduced in the range between 0.7% and 
±2.2% for DNI and ±0.3% and ±1.3% for GHI. 

This analysis is based on the data representing a history of 
year 1994 to 2013, and on the expert extrapolation of the 
related weather variability. The assumptions may not reflect 
possible man-induced climate change or occurrence of extreme 
events such as large volcano eruptions in the future [23, 24]. 

 
Combined uncertainty 

The combined (user’s) uncertainty of the yearly DNI and 
GHI values is quantified, considering P90 case. Two 

components of uncertainty have to be considered: (i) 
uncertainty of the model estimate in relation to high accuracy 
meteorological instruments and (ii) interannual variability due 
to changing weather.  

The two above-mentioned uncertainties combine in the 
conservative expectation of the minimum GHI, and DNI for N 
years (Tab. 7). Assuming a simplified case of normal 
distribution of the annual values, probability of exceedance can 
be calculated at different confidence levels.  

 
Table 7 Combined user’s uncertainty for annual GHI and DNI in 
South Africa, assuming 20 years of data – original values and after 
adaptation. As a reference, the best-achievable values are shown for 
site-adapted satellite data. 

DNI Lower Higher Very high 
Original data 8.0 10.0 11.5 
After adaptation 5.0 6.0 7.5 
Best-achievable 3.5 - - 
GHI Lower Higher Very high 
Original data 3.5 4.0 5.0 
After adaptation 3.0 3.5 4.0 
Best-achievable 2.5 - - 

 

CONCLUSIONS  

This work reduced uncertainty of longterm DNI and GHI 
solar resource maps for South Africa, Lesotho and Swaziland. 

It is a result of systematic development and maintenance of 
solar measuring network of ground-based high-standard 
equipment and systematic work on implementation of the best 
practices in operation and maintenance of solar equipment. 
Well-linked to this infrastructure is satellite-based solar 
radiation model SolarGIS, which has proven quality of map 
based outputs as well as site-specific data products. 

The typical uncertainty of the SolarGIS model estimate has 
been reduced from the 8% to 9.5% range for the original DNI 
yearly values to the range 5% to 6% for accuracy enhanced 
values. For GHI the reduction is seen from the range 3.5% to 
4% for original values to 3% to 3.5% for accuracy enhanced 
values. Thus, regional adaptation helped to reduce average 
systematic bias by more than 3% for DNI and by about 1% for 
GHI. 

Besides reducing systematic deviation (bias), the regional 
model adaptation results also in significant improvement in 
other data quality indicators: reducing random deviation 
(measurable by Root Mean Square Deviation) and improving 
probability distribution of hourly values (measureable by 
Kolmogorov-Smirnoff Index). Higher-quality DNI and GHI 
improve accuracy of energy simulation and financial 
predictions. 

There is still a room for reduction of uncertainty in the 
range of 1.5 to 2.5% for DNI and 1 to1.5% for GHI, and this 
can be achieved at a local level by use of high accuracy ground 
measured data for site-specific adaptation of SolarGIS 
multiyear time series. 
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Deployment of a number of measuring stations enables to 
maintain control over quality of satellite-based estimates, as 
well as they help to improve understanding of the dynamics of 
solar resource in regions of South Africa as a country with very 
divers climate and geography. Even though regional adaptation 
reduced uncertainty, it is still important to maintain in operation 
solar measuring stations: 
• For new sites, relevant to any larger solar power project, it 

is important to operate a measuring station to reduce 
uncertainty to a achievable minimum of site-specific 
longterm model estimates; 

• For existing sites, measuring stations together with satellite 
data make it possible to maintain high quality and 
bankability of solar resource and meteorological data for 
sustainable performance assessment of solar power plant 

Keeping solar measuring stations is of strategic importance 
to maintain quality of satellite models and of solar power 
forecast systems. 
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