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Abstract 

The optical field and receiver system contributes up to 50 % to 

the total cost of a central receiver solar power plant.  Most 

optimization studies focus on a given heliostat design and seek 

to optimize the field layout for maximum collection efficiency.  

Heliostat size seems to be a controversial topic with research 

leading to conflicting results.  Formal mathematic optimization, 

solving a set of sequential spherical quadratic sub-problems, 

was used to optimize the collection efficiency of a central 

receiver system with a biomimetic heliostat field arrangement, 

subject to a non-interference constraint.  The design variables 

are receiver optical height, receiver height and diameter, 

heliostat length and width, and the seeding parameters for 

radial and azimuthal spacing of the optical field.  An optimum 

annual averaged field efficiency of 64.0 % was calculated, up 

from the initial field efficiency of 57.7 %.  The optimal 

heliostat size is 184 m
2
, and receiver width follows the growth 

in heliostat size closely.  The collection efficiency is relatively 

insensitive to tower optical height.  It is clear from literature 

that different objective functions will drive results towards 

conflicting outputs.  The choice of objective function will most 

likely be driven by the researcher’s role within the 

concentrating solar power community. 

Keywords: central receiver, heliostat field, biomimetic layout, 

collection efficiency, mathematical optimization. 

1. Introduction 

The heliostat field is the dominant capital cost of a central 

receiver plant, contributing 40 – 50 % of the total plant cost, 

depending on the amount of thermal energy storage [1, 2].  

Despite the use of free energy from the sun, solar thermal 

energy is still considerably more expensive than fossil fuel 

derived power, and other forms of renewable energy, like wind, 

hydro, and photovoltaics.  With thermal energy storage, solar 

thermal energy is an attractive solution for future power 

generation in an arid country like South Africa with a high solar 

resource, but limited wind and hydro resources.  Efforts to 

reduce the cost of the heliostat field is mainly focussed on 

either reducing the cost of individual heliostats [3, 4], or 

reducing the total number of heliostats via an improved field 

lay-out.  These, and other plant improvements supports the 

SunShot Initiative’s long term goal of solar thermal energy 

being cost competitive with fossil fuel derived power 

generation. 

One of the earliest studies in heliostat field optimization was 

done by Lipps and Van’t Hull [3], who concluded that the 

overall collection efficiency of staggered heliostat fields is 

usually higher than that of a cornfield lay-out.  They used the 

ratio between total system cost to the total energy collected as 

figure of merit.  In order to reduce the number of calculations, 

individual heliostats were replaced by cells of representative 

heliostats.  Sanchez and Romero [6] suggested the use of a 

growth based algorithm to design the heliostat field lay-out.  

The first heliostat is placed in the position that yields the 

highest yearly energy collection, the second heliostat is placed 

in the next best position, considering blocking and shading by 

the first, and so forth until the entire field is populated.  Wei et 

al [7] focused on the heliostat field for a cavity receiver, and 

concluded that there is a relationship between the effective field 

boundaries and cavity aperture geometry.  Ausburger [8] used a 

multi-variable optimization routine to find the lowest levelized 

cost of electricity (LCOE) for the radially staggered Gemasolar 

heliostat field.  Heliostat spacing, size, number of heliostats, 

receiver optical height, and receiver length and diameter were 

all treated as design variables.  He concluded that the plant with 

the lowest LCOE also has the lowest optical efficiency, mainly 

due to the increased attenuation and spillage losses associated 

with larger fields.  Besarati and Goswami [9] optimized a 

biomimetic heliostat field lay-out for a 50 MWt plant at Dagget, 

California, using maximum field efficiency as target function 

for a fixed tower height and heliostat size.  They validated their 

model against field measurements at the PS10 plant in 

Andalucia, Spain, and subsequently used it to redesign the 

PS10 heliostat field lay-out.  Carizosa at al [10] used a greedy-

based algorithm to optimize the electricity generated per unit 

cost for a heliostat field comprised off different sized heliostats 

in the same field.  Lutchman et al [11] assigned a random 

location to each heliostat in a bounded field, and used a 



    

constrained classical gradient based optimization algorithm to 

force heliostats towards positions that maximize the field 

optical efficiency.  The heliostat position vector for each 

heliostat is treated as a design variable.  Pidaparthi and 

Hoffmann [12] investigated the effect of three discrete heliostat 

sizes on the LCOE for a 100 MWe solar thermal power plant at 

Upington, South Africa, and concluded that medium sized 

heliostats (43 m
2
) yield the lowest LCOE.  The research cited in 

the introduction is not meant to be comprehensive, but rather 

highlight distinctive trends followed by individual 

researchers/research groups. 

Numerous software tools (HFLCAL, DELSOL3, CAMPO, 

SOLTRACE, SAM, SolarPILOT, etc.) have been developed to 

analyse/optimize either a heliostat field and/or the entire solar 

thermal plant.  Many of these codes are available as freeware, 

and allow the user greater/lesser freedom of choice in the 

variables to be optimized.  Although some allow user specified 

field lay-outs, it would appear that their optimization 

capabilities are currently restricted to radial staggered or 

cornfield lay-outs. 

 

2. Model description 

2.1. Optical field efficiency 

Heliostats close to the tower as a rule have a higher efficiency 

than those further away from the tower.  This has led Noone et 

al [13] to sacrifice a little on blocking and shading efficiency in 

return for a higher density layout close to the tower.  The 

overall result is a smaller plant footprint and a more efficient 

heliostat field.  A biomimetic layout, similar to the petals on a 

sunflower, yields a continuous density function across the 

entire field.  More significantly, it is amenable to mathematical 

optimization. 

The position vector of heliostat k in polar coordinates for a 

phyllotaxic lay-out as suggested by Noone et al is given by 

𝑟𝑘 = 𝑎𝑘𝑏 

and 

𝜑𝑘 =
4𝜋𝑘

3 + √5
 

Here, it is assumed that the land is perfectly flat, and that the 

Cartesian vector pointing from the centre of the heliostat to the 

centre of the receiver is given by 

𝑇⃗ 𝑘 = {−𝑟𝑘 cos𝜑𝑘 ;  −𝑟𝑘 sin 𝜑𝑘 ; 𝐻𝑡} 

with Ht the optical height of the tower.  The cosine efficiency of 

the heliostat is given by 

𝜂𝑐,𝑘 = cos𝜓𝑘 

With  

𝜓𝑘 = 0.5 cos−1{𝑡 𝑘 ∙ 𝑠 𝑘} 

The unit vector 𝑠 𝑘 is pointing from the centre of the heliostat 

towards the sun, and 𝑡 𝑘 is the unit vector of 𝑇⃗ 𝑘.  The sun vector 

is given by Duffie and Beckman [14] 

𝑠 =  cos𝜙 sin 𝜃 𝒊 + sin𝜙 sin 𝜃 𝒋 + cos 𝜃 𝑘⃗  

with  and  the sun zenith and azimuth angles respectively.  

The blocking and shading algorithm, based upon the projection 

of rectangular images of neighbouring heliostats onto each 

other is described in a sister publication by Hoffmann[15].  The 

method is expected to marginally overpredict blocking and 

shading effects.  Noone’s seeding algorithm does not allow a 

clear link between heliostat k and its immediate neighbours.  

Heliostats were checked for shading against all other heliostats 

in the field, whilst blocking calculations were restricted to those 

heliostats with lower indices, and consequently located closer 

to the tower. 

A spillage loss was calculated by projecting a circular heliostat 

image onto a projection of the receiver in a plane normal to the 

incoming beam from heliostat k [16], allowing for a beam angle 

divergence of 9.3 mrad.  No provision was made for canting of 

the mirror surfaces. 

A constant extinction coefficient, adjusted to match the annual 

direct normal irradiation of 2 100 kWh/m
2
/y as reported in the 

literature [17], was used to simulate attenuation losses in the 

troposphere.  The model effectively assumes that every day is a 

sunny day, but with a relatively high turbidity factor to 

compensate for cloudy days.  This approach bypasses the need 

for typical meteorological year data, and should have little 

effect on the integrated annual collected energy, but it is not 

recommended for design point calculations.  It was assumed 

that the same extinction coefficient also holds at ground level.  

The atmospheric attenuation efficiency is given by 

𝜂𝑎𝑡 = 𝑒−𝜅|𝑟 𝑘| 11 000⁄  

Surface, astigmatism, tracking and sun shape errors were not 

taken into account.  Mirror fouling and reflectivity were 

combined into a single constant efficiency r, whilst a constant 

availability av was assumed for the field.  The total collected 

radiation is given by 

𝑄 = ∑ [ ∑ {∑ 𝜂𝑐,𝑘𝜂𝑏,𝑘𝜂𝑠,𝑘𝜂𝑠,𝑘 , 𝜂𝑎𝑡,𝑘𝜂𝑟𝜂𝑎𝑣𝐼(𝑛, 𝑡)𝐴ℎ

𝑁

𝑘=1

}

𝑠𝑢𝑛𝑠𝑒𝑡

𝑡=𝑠𝑢𝑛𝑟𝑖𝑠𝑒

]

365

𝑛=1

 

A spot validation of the model was done against SolarPILOT 

v.2016.3.17 for solar noon on the spring equinox.  Total 



    

collected energy results are within 1.5 %, with this model 

yielding the more pessimistic result.  SolarPILOT, using a 

convolution integral [18] for the sun shape, would assign lower 

flux values to the periphery of the image than the pill-box 

shaped assumed in this model, resulting lower spillage losses. 

 

2.2. Field optimization 

Parametric studies tend to explore the entire design space, and 

hence almost guarantee that the global minimum or maximum 

will be found.  However, for problems with many design 

variables, a vast number of samples have to be taken from 

design space.  If the sampling calculations are expensive to 

evaluate, a parametric study very soon becomes impractical.  

Mathematical optimization attempts to reduce the number of 

samplings (design iterations) significantly below that required 

for an equivalent parametric study. 

Careful consideration should be given to the choice of objective 

function.  In solar thermal power plants, key economic 

indicators (LCOE, maximum revenue, etc.) are often in conflict 

with key energy indications (heliostat field efficiency, total 

collected energy, etc.) necessitating the use of a multi-objective 

optimiser [8].  The cost of individual plant components and 

infrastructure, inflation and interest rates and feed-in tariffs are 

variable in time and across countries, rendering most economic 

evaluations temporal in nature and at the mercy of forecasts 

[19].  A decision was made to focus only on one key energy 

indicator, namely the total collected solar energy, despite 

LCOE being of more practical significance for plant owners. 

The task is to maximize the annual collection of solar energy 

from the heliostat field 

max 𝑓(𝑥 ) = 𝑄(𝑎, 𝑏, 𝐻𝑡 , 𝐻𝑟 , 𝐷𝑟 , 𝐿ℎ,𝑊ℎ) 

Subject to the non-interference constraint 

𝑔(𝑥 ) = |𝑟 𝑖 − 𝑟 𝑗|𝑖≠𝑗
≥ √𝐻ℎ

2 + 𝑊ℎ
2 + 𝛿 

with  = 0.5 m. 

The initial design was loosely based on a 50 MWe equivalent of 

the Gemasolar (37.5625° N) solar thermal plant [20], with the 

seeding parameters taken from [13], and is given in table 1.  

The current model is based on local solar time, not local 

standard (clock) time, hence the longitude will have no 

influence on the results.  The eccentricity of the earth’s orbit 

around the sun is ignored. 

Newton’s method is a very efficient steepest gradient 

optimization algorithm that takes the curvature of the function 

to be optimized into account: 

𝑥 𝑖+1 = 𝑥 𝑖 − 
∇𝑓(𝑥 𝑖)

𝐻(𝑥 𝑖)
 

Sampling of the N  N Hessian matrix, with N the number of 

design variables, is computationally expensive as it involves the 

calculation of the second derivatives 𝜕2𝑓 𝜕𝑥𝑖𝜕𝑥𝑗⁄ . 

 

Variable Value 

Tower optical height, Ht 140 m 

Receiver height, Hr 10.5 m 

Receiver diameter, Dr 8.5 m 

Heliostat width, Wh 12.65 m 

Heliostat length, Lh 9.49 m 

a 4.5 

b 0.65 

Table 1.  Initial design variables 

Snyman and Hay’s [21] spherical quadratic optimization 

algorithm (SQA) was selected for its robustness and ease of 

implementation.  Another benefit of their algorithm is that it 

determines its own step length.  It appears to be stable and 

reliable, even for ill-posed problems.  Snyman and Hay 

replaced the determinant of the Hessian matrix with the 

curvature of a simple spherical quadratic function 

𝐻(𝑥 𝑖)  ≈  𝐶𝑖 = 
2{𝑓(𝑥 𝑖−1) − 𝑓(𝑥 𝑖) − ∇𝑇𝑓(𝑥 𝑖)(𝑥 𝑖−1 − 𝑥 𝑖)}

⟦𝑥 𝑖−1 − 𝑥 𝑖⟧
2

 

The optimization problem is reduced to finding the minima of a 

sequential series of quadratic sub-problems instead.  This 

greatly reduces the number of computationally expensive 

function evaluations per design iteration from the 28 required 

for the Hessian, to 7.  Perturbations of 1 % of the current value 

of the design variables were arbitrarily chosen to calculate local 

gradients.  Groenwold et al [22] insisted on convex spherical 

quadratic approxima-tions. 

𝐶𝑖 = 𝑚𝑎𝑥[𝐶𝑖
∗, 𝛼] 

𝐶𝑖
∗ is substituted for the Hessian, and  is a positive real 

number. 

The optimization is terminated when 

|𝑓(𝑥 𝑖+1) − 𝑓(𝑥 𝑖)| ≤ 𝜀1   𝑎𝑛𝑑   |∇𝑇𝑗(𝑥 𝑖+1)| ≤ 𝜀2;  (1, 2) small 

In common with all conjugate gradient based algorithms, SQA 

can’t discern between local and global maxima, and should 

preferably be tested with different initial designs to ascertain 

that it would consistently find the same optimum. 



    

3. Results and discussion 

A total of 7 000 heliostats, including those that violate the non-

interference constraint (de-activated), were evaluated, and the 

annual collected energy recorded, as shown in figure 1.  The 

artificial cap on the number of heliostats is merely a 

mathematical convenience, as a larger number of heliostats will 

invariably increase the total collected energy.  Linear upscaling, 

ignoring heliostat efficiency, of the 20 MWe Gemasolar plant to 

a 50 MWe equivalent sized plant resulted in an optical field 

with about 7 000 heliostats.  The worst performing heliostats 

were systematically removed from the field, until the remaining 

heliostats are capable to deliver the required electrical output.  

Note the absence of a formal exclusion zone close to the tower:  

the non-interference constraint typically place the first 

allowable heliostat at a distance Ht / rmin > 0.8 from the tower.  

The collected energy reached a maximum of Q
*
 = 1 530 GWht 

after 6 iterations, where after it started to decrease slightly. 

 

Figure 1.  Total collected energy from entire field. 

 

From figure 2, it is clear that heliostat length (26 %) and width 

(22 %), and receiver diameter (25 %) increased most 

significantly, whilst the tower optical height increased by only 

9 %.  The initial design specifications were for a tall, slender 

receiver.  Receiver height and both the coefficient and exponent 

in the seeding function hardly moved from their initial values at 

all.  The latter could be expected, as Noone et [13] already 

optimized their values.  The results suggest that an aspect ratio 

close to 1 for both heliostats and receiver is desirable, 

something also observed by Ausburger [8].  However, the 

model assumes a single aiming point on the tower axis for all 

heliostats, without any constraint on the maximum receiver heat 

flux (not included in the calculations), and the lack of a proper 

aiming strategy might skew the receiver dimension results. 

 

Figure 2.  Migration of design variables towards optimum. 

 

The final design variables are listed in table 2, with their 

percentage change from the original design in brackets. 

Heliostats were ranked in descending order of collection 

efficiency, and the lowest ranked heliostats were removed from 

the field.  The remaining heliostats were sufficient to deliver 

50 MWe continuously throughout the year for a plant with an 

average thermal efficiency of 40 %.  Average here refers to the 

thermal efficiency at the average ambient temperature. 

A number of heliostats closest to the tower are also eliminated 

as they violate the non-interference constraint.  As a result, the 

exclusion zone close to the tower has a radius of 125.8 m, or 

82.5 % of the tower optical height, that is deemed sufficient 

space for the power block, thermal energy storage and auxiliary 

plant.  The final field lay-out, containing 4 284 heliostats, is 

depicted in figure 3. 

 

Variable Value (percentage change) 

Tower optical height, Ht  152.4 m (8.9 %) 

Receiver height, Hr  22.87 m (1.5 %) 

Receiver diameter, Dr  17.69 m (24.5 %) 

Heliostat width, Wh  15.39 m (21.6 %) 

Heliostat length, Lh  11.96 m (26.0 %) 

a  4.54 (0.9 %) 

b  0.66 (2.1 %) 

Table 2.  Final design variables. 

 



    

 

Figure 3.  Heliostat field lay-out after 6 design iterations. 

 

Iter 0 1 2 3 4 5 6 7 

Nh 6917 6640 6668 6015 5377 4293 4284 4304 

Qmax 

[GWh] 
1038 1097 1115 1200 1301 1527 1530 1523 

Table 3.  Change in number of heliostats required to deliver 

50 MWe throughout the year, and collected energy from all 

heliostats. 

This study would suggest that the best optical performance is 

derived from 184 m
2
 heliostats, based upon optical performance 

only.  Ausburger [8] found that the lowest specific cost for 

heliostats falls within the range 200 m
2
 < A < 250 m

2
.  

Pidaparthi and Hoffmann [12] evaluated three discrete heliostat 

sizes, and reported that the lowest LCOE is achieved for 43 m
2
 

heliostats.  Quite clearly, different objective functions drove 

these studies towards vastly different outcomes.  The objectives 

seem to be conflicting, and Ausburger [8] reported that the 

unconstrained plant with the best LCOE also has the worst 

optical efficiency. 

4. Conclusion 

The optical performance of a 50 MWe solar thermal power 

plant was evaluated for a location coincident with the 

Gemasolar solar thermal power plant in Southern Spain.  Seven 

design variables, namely tower optical height, receiver height 

and diameter, heliostat length and width, and the two seeding 

variables for a biomimetic heliostat field layout were 

optimized, using a conjugate gradient method solving 

successive spherical quadratic sub-problems.  Blocking and 

shading efficiency were determined from orthogonal mapping 

of heliostat images onto each other for the entire field, whilst 

spillage loss was calculated in a similar fashion by mapping a 

circular image of the heliostat onto the receiver.  A spot 

validation of the model was done against SolarPILOT for 

spring equinox, and the model under predicted the collected 

energy by 1.5 %.  Although the SolarPILOT code seems 

computationally more efficient, its current optimization 

capability is limited to internally generated, radially staggered 

and cornfield layouts, and does not allow for the optimization 

of user defined heliostat field layouts. 

The optimal solution gravitated towards large (184 m
2
), almost 

square heliostats and a large receiver with aspect ratio striving 

towards unity.  At the optimum design, the annual average field 

collection efficiency was 64.0 % compared to the initial field 

efficiency of 57.7 %. 

It is clear from the literature that different objective functions 

(cost per unit surface area, LCOE, collection efficiency, etc.) 

drive the optimal design in different directions, and that the use 

of a multi-objective optimizer, as suggested by Ausburger [8] 

would be prudent.  It would appear that the choice of objective 

function is currently dictated by the role of researcher (plant 

owner/operator, heliostat developer/supplier, academic, etc.) in 

the solar thermal community.  Literature suggests that there’s 

currently a lack of consensus on an appropriate objective 

function amongst the solar thermal community.  
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