

Obstacle avoidance with a Multicopter in a dynamic 2D environment

Author: JS Coetzee Supervisor: Dr WJ Smit

Solar Thermal Energy Research Group (STERG), University of Stellenbosch

Overview

- Background (why it's needed)
- Algorithms used
- Algorithms explained
- Conclusion
- Questions

Background - Why it's needed

Obstacle Avoidance

- Effective and efficient inspections -High plant safety
- Routine inspections Lower maintenance costs
- But, inspections require time and labour

 $\langle O \rangle$

Background - Why it's needed

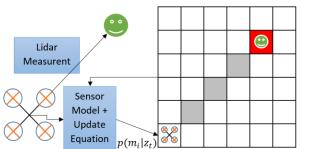
Obstacle Avoidance

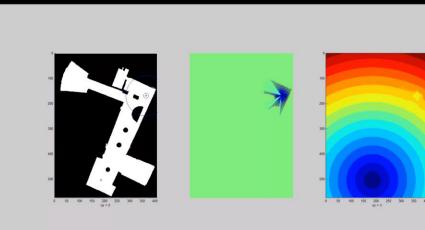
- Fully automated inspection
 - increase the efficiency
 - reduce the operating and maintenance cost
 - improve the safety and work conditions

 $\langle O \rangle$

Background

- For system to be automated have to be able to fly autonomously
- Broadly classified under
 - Global and Local path planning
- Virtual Force Field
- D* Lite



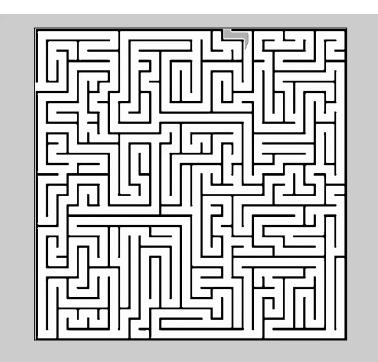

Algorithms explained

Obstacle Avoidance

Virtual Force Field (VFF)

- Global path planning with local collision avoidance
- Goal position Attractive force
- Obstacles Repulsive force
- Can be compared to a marble on a floor
- Local minima Problem

Algorithms explained


Obstacle Avoidance

D* Lite

- Global path planning algorithm
- Plan from end to start therefore less computationally intensive when re-planning
- Further enhance speed add virtual force field
- D* Lite basically pulls the quadcopter to the end position
- Local minima?

Conclusion

- High algorithm speeds were obtained
 - Global path (100x100 map) < 0.3 s</p>
 - Path recalculation is faster as some data can be re-used
 - At each position it takes less than 4 ms to check if the next position is suitable with VFF
- Code was successfully tested with a multicopter simulator
- We also successfully field-tested our algorithms with virtual obstacles to check if everything works correctly
- Sensor is already tested and works perfectly, just have to mount and do final tests

ACKNOWLEDGEMENTS: Dr. WJ Smit NRF

CONTACT DETAILS: JS Coetzee 16484649@sun.ac.za Solar Thermal Energy Research Group (STERG) Stellenbosch University South Africa

STERG@sun.ac.za +27 (0)21 808 4016

visit us: concentrating.sun.ac.za