The development of an Organic Rankine Cycle Heat Engine using a rock thermal battery as the heat source

By: Promoter: Co-Promoter: Jason Christopher Humm Prof Russell Phillips Mr Karl Du Preez

Presentation Outline

- Introduction
- How It Works
- Problem Statement
- Sub-Problems
- Hypothesis
- Delimitations
- Significance Of Research
- Advantages over other renewable energy harvesters
- Discussion of components
- Conclusion

Introduction

- There are many initiatives in South Africa that aim to cut down emissions and power consumption
- By increasing the proportion of energy obtained through renewable sources
- Created an interest in low grade heat recovery
- Solutions to generate electricity from low temperature heat sources have been proposed

Introduction

- The Organic Rankine Cycle (ORC) uses working fluid that has a lower boiling temperature than water, this allows reduced evaporating temperatures
- ORC system can be used with various heat sources with little modifications

How It Works

Problem Statement

 To design, build and analyse a small scale Organic Rankine Cycle that will transform stored heat energy into shaft power.

Sub-Problems

- Investigate and select the working fluid.
 Considering thermal stability, toxicity, flammability and cost.
- Establish a practical means of extracting heat from the rock

Sub-Problems

- Evaluate and select
 - Expander
 - Condenser
 - Working fluid pump

Hypothesis

It is envisaged that a domestic scale Organic
Rankine Cycle Heat Engine can be developed that
will be able to run off a rock thermal battery and
provide the user with electricity during the day and
for a number of hours into the night.

Delimitations

- For the purpose of this research the heat source is restricted to a hot rock thermal battery with rock mass less than 2000 Kg.
- The research aims to use an existing expander and condenser and will not focus on the design or optimisation thereof.

Significance of the research

- Price of fossil fuels increasing
- Concerns about climate change casting a shadow over the future of coal
- Individuals realising they can make a difference
- Manufactured in South Africa

Advantages Over Other Renewable Energy Harvesters

- Storage system
- Automatic and will operate continuously
- Does not rely on weather
- Simple to setup and maintain

Thermodynamic Model

Have set up the thermodynamic model in excel

Qin	11477.66675 w
	11.47766675 Kw
Wout	1.2253956 Kw
efficiency turbine	80%
efficiency pump	75%
Actual Wout	0.98031648Kw
Work pump	0.043585661 Kw
Efficiency thermal	8.161334866%

Expander

Selected 1 kW
 Scroll expander
 from Air Squared

Condenser

 Condenser selected is a brazed plate heat exchanger

Working Fluid Pump

- The pump selected is a Hydra-cell G20 pump 0.55kw
- Plunger pump
- Pulsation dampener

Fluid

The fluid selected is R245fa

Genetron Simulation

Refrigerant	R245FA		Thermal Eff.	-	0.0834
GWP	1030		Turb. Exit Quality	-	1
Mass Flow	kg/s	0.05714	Turb. Exit Superheat	°C	13.57
Boiler Heat Input	W	11687.72	Boiler Temp.	°C	103.98
Turbine Output	W	980	Condensation Temp.	°C	57.46
Heat Rejection Cond.	kW	10.273	Pump Power	kW	0.058

Conclusion

- Not a new technology
- Potential for domestic user
- Need to lower cost
- Plan for testing in October/November

Thank you

- Contact details
- Jason Humm
- s209001426@nmmu.ac.za