Limitations of assuming a circular Gaussian flux density distribution for a heliostat image

W.A. Landman, A. Grobler, F. Dinter & P. Gauche
Solar Thermal Energy Research Group (STERG)
Why assume a circular Gaussian distribution?

Ray Tracing

Circular Gaussian
Where do we use it?

- Plant performance
- Field layout optimisation
- ...
- ...
- Aiming Strategy Optimisation
- Flux Density Distribution

- Salome 2013
- Basarati 2014
- Solgate Project 2005
- and in STERG
 - Landman
 - Grobler
Total Beam Dispersion Error

\[\sigma_{Tot}^2 = \sigma_{sun}^2 + \sigma_{astigmatism}^2 + \sigma_{BQ}^2 \]
Gaussian Flux Image

\[\frac{P_h}{\sigma^2_{Tot}} \exp \left(\frac{-r^2}{2\sigma^2_{Tot}} \right) \]
• Sun shapes
• Surface Slope Errors
• Incidence angle
• Receiver incidence angle
• Focal Ratio
• Aspect Ratio
Incidence Angle or φ
Surface Slope Errors
Parameter Variation

- Operational/Tangential Plane
- Sagittal Plane
- Incidence Angle, ϕ
- Surface Normal
- Mirror Rack/Reflective Plane
- Toroidal Misalignment Angle, θ
- Toroid Pre-alignment Angle, ψ
- Optical Alignment Angle, τ
Small ϕ
Large φ
Conclusions

- CG greatly overpredicts the radial flux density distribution for:
 - High incidence angle
 - SSE $\sim \sigma_{sun}$