

SOLAR THERMAL ENERGY RESEARCH GROUP

Modelling of the SUNSPOT Cycle: Some Foundational Work

Jean Pitot PhD Candidate Promoter: Prof Hanno Reuter

STERG Symposium – 18 July 2013

- Overall project objective:

Comprehensive assessment of the performance characteristics of the SUNSPOT cycle on the basis of high-fidelity thermodynamic modelling

- Assessment framework: software tools to facilitate design-point, off-design, parametric & economic modelling
- Modelling considerations: meteorological data, working fluid property models, component models, system integration models, control strategy, cooling strategy, dispatch strategy, etc.

- The performance of most SUNSPOT components can be represented fairly simply with well-established models
- Certain components are more complex to model: e.g. compressor, rock bed thermal storage
- The impact of model complexity is compounded in long-duration calculations, where computational efficiency is of importance
- In addition, a lack of clarity exists regarding best-practice working fluid property models for air & combustion gases
- This presentation outlines two foundational activities related to resolving the above issues:
 - 1. Part 1: Thermodynamic property modelling of SUNSPOT's working fluids
 - 2. Part 2: A generic compressor model for parametric studies

- SUNSPOT cycle working fluids: (moist) air, combustion gases, water/steam
- Internationally recognised model for water/steam: IAPWS-IF97 formulation
- Internationally recognised model for air & combustion gases: <u>none</u>
- A multitude of contemporary data sources exist for air & combustion gas properties (models, data tables, software)
- Data sources vary substantially in complexity
- Real gas effects (high pressures) & species dissociation (high temperatures) complicate matters further
- How significantly does data source sophistication impact on plant performance predictions?
- Is a state-of-the art ideal gas model sufficiently accurate?

- To evaluate this, seven contemporary data sources were used to rigorously predict the performance of a gas turbine plant
- Models: McBride et al. '93 (IG), McBride et al. '02 (IG), Lanzafame & Messina (IG), VDI Guideline 4760 (IG/D)
- Software: NASA CEA v2 (IG/D), REFPROP (RG), FluidEXL Graphics
 LibHuFlueGas (RG+D)

Deviations in net specific power output predictions (w.r.t VDI data)

Deviations in thermal efficiency predictions (w.r.t VDI data)

Some conclusions:

- Appreciable deviations in performance predictions exist, especially for high PRs & TITs
- Ideally, both real gas effects & species dissociation should be accounted for; even at moderate PRs & TITs (i.e. SUNSPOT)
- Air & combustion gases: high-fidelity simulations LibHuFlueGas software, lower-fidelity simulations – VDI Guideline 4760
- An alternative, more flexible approach: employ REFPROP software with chemical equilibrium routine
- Water/steam: IAPWS-IF97

Part 2: Generic Compressor Model for Parametric Studies

- Prediction of compressor performance complex but crucial
- Maps: pressure ratio & isentropic efficiency vs.
 parametric mass flow rate at varying parametric speeds
- Approaches: experimental, scaling, analytical/numerical, CFD, etc.
- These typically require detailed design information
- When conducting parametric/optimisation studies, this is problematic
- A generic, representative performance model scaled to design-point parameters would thus be useful
- Proposed method: data from a wide range of axial compressors & simple fitting functions to develop averaged, normalised characteristics

energy.siemens.com

Characteristic points on the constant speed lines

Quadratic regression of characteristic point locus equations as f(N*)

STERG Symposium - 18 July 2013

- Locus equations provide normalised coordinates for each characteristic point as f(N*)
- Locus equation coefficients and constants vary according to source data set
- Lines of constant N* are then defined between the characteristic point sets by elliptical functions
- For a known mass flow rate and speed (@ design-point and off-design conditions), the pressure ratio and isentropic efficiency can be found

Averaged compressor maps derived from data associated with 11 sources

How well do the elliptical functions describe the constant speed lines?

Some conclusions:

- The proposed model provides a simple, generalised representation of axial compressor behaviour for use in parametric/optimisation studies
- It also provides a useful performance map digitisation technique
- The model's continuous, algebraic nature enables efficient simulation, especially over long time periods
- Future improvements: incorporation of more data sources, categorisation of data sources & alternative constant speed functions for isentropic efficiency

As part of the foundational phase of the project:

- Thermodynamic property models for SUNSPOT's working fluids have been selected
- Development of a computationally-efficient generic compressor model for use in parametric studies

Concurrently:

- Component models have been assigned to most cycle components
- Design-point modelling of the gas turbine and water/steam cycles
- Initial software development activities

In the near future:

- Finalise outstanding component models
- Complete first-phase of software development
- First round of pseudo-transient modelling