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Abstract 

A method is developed for the measurement of the mirror 
orientations of all heliostats in a field simultaneously. Tower 
mounted electromagnetic transmitters are placed at known 
positions around the perimeter of the heliostat field, 
transmitting identical sinusoidal signals. An electromagnetic 
receiver in the field uses a Hilbert transform-based method to 
calculate the phase difference between a pair of signals, and 
using the wavelength, calculates the difference in distance 
between itself and the corresponding pair of transmitters. The 
receiver position is then approximated using multilateration 
with a non-linear least squares algorithm. By attaching three 
receivers to the heliostat mirror surface at distinct points, a 
plane parallel to the mirror surface is formed which is used to 
determine the mirror orientation. A simulation of the system 
implementing the proposed method is constructed to verify that 
the method works, and results show that for the error sources 
included in the model it is theoretically possible to achieve a 
tracking error of one milliradian or less. 
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1. Introduction 

The central receiver system (CRS) is a relatively new 
technology within the field of concentrating solar power (CSP) 
and predictions indicate significant opportunities to reduce the 
levelised cost of electricity (LCOE) by as much as 40% from 
2010 to 2020 [1] by increasing performance and lowering costs. 
The performance of CRS plants is highly dependent on the 
efficiency of the heliostat field, which in itself contributes an 
estimated 30% - 50% of the total plant cost [2] [3]. 

Heliostat field efficiency is increased by reflecting a greater 

portion of the solar radiation incident on the field onto the 
receiver. This typically requires an increased accuracy in 
heliostat tracking. Open-loop tracking is hindered by problems 
such as mechanical tolerances, while current closed-loop 
tracking methods are either impractical, not accurate enough, or 
too expensive [4] [5] [6] [7]. The current industry norm seems 
to be open-loop tracking using an error model [8] for a tracking 
error of less than one milliradian. This, however, requires 
periodic recalibration of error parameters which can take up to 
three weeks for the entire field [9] [10]. 

This paper investigates heliostat mirror orientation as a possible 
source of feedback for closed-loop tracking systems. A method 
is developed to accurately determine the mirror orientations of 
all heliostats simultaneously with an accuracy that aims to 
match or exceed current standards. The concept for such a 
system is developed in the following section, after which some 
of the core aspects are developed in detail. The results 
demonstrate a working simulation of the system and investigate 
the effects of some error sources on its performance. The paper 
is concluded with some final remarks. 

2. Conceptual Overview of Proposed System 

In the past, sites such as Solar One have used inclinometers to 
measure the heliostat azimuth axis tilt angle [11]. While such 
methods can certainly be used to further improve results, they 
are not the focus of this paper. Instead, this paper focuses on an 
approach where the heliostat orientation is obtained by 
accurately measuring the coordinates of three or more distinct 
points on its mirror surface. These points define a plane which, 
when parallel to the mirror, is used to calculate the heliostat 
normal vector. For simplicity, it is assumed in this paper that 
the plane and mirror surface are parallel, though it is possible to 
develop an error model to compensate for any non-parallelism. 



    

The approach for determining the coordinates of a single point 
within a predetermined three-dimensional space is based on a 
2007 master’s thesis by Murphy [12] which addresses a similar 
problem. Electromagnetic receivers are placed at three or more 
points on the mirror surface for which the coordinates are 
required. Tower mounted transmitters are placed at known 
positions around the perimeter of the heliostat field as shown in 
Fig. 1. A single central oscillator is connected to each 
transmitter to ensure that all transmitters transmit a sinusoidal 
signal of exactly the same frequency, though the phases may 
differ. The distance 𝑑𝑖 between a receiver and transmitter 𝑇𝑖  
results in a phase shift of 𝜙𝑖 from the time the signal is 
transmitted to the time it is received. While measuring 𝜙𝑖 may 
prove problematic, it is possible to measure the difference in 
phase shift 𝜙𝑖 − 𝜙𝑗 between two signals (§3.1) from 
transmitters 𝑇𝑖  and 𝑇𝑗. This value is proportional to 𝑑𝑖 − 𝑑𝑗, the 
distance between the receiver and transmitter 𝑇𝑖  relative to the 
distance between the receiver and transmitter 𝑇𝑗. When the 
wavelength, and thus frequency, of the sinusoid is known, 
𝑑𝑖 − 𝑑𝑗 can be calculated exactly (§3.2). These measured 
distance differences, along with the known positions of the 
transmitters (§3.3), are then used in an algorithm using 
multilateration and non-linear least squares to calculate the 
position of the receiver (§3.4). When the positions of all 
receivers on the mirror surface have been calculated, the 
corresponding plane and resulting normal vector is calculated 
(§3.5). This process is illustrated in Fig. 2. 

 

Fig. 1 Conceptual illustration of transmitter towers 
surrounding heliostat field. 

Even though the frequency of all transmitted signals is the 
same, each signal undergoes a different phase shift 𝛷𝑖 from the 
time it is generated at the central oscillator to the time it is 
transmitted at 𝑇𝑖 . These values may change slowly throughout 
the day and need to be periodically recalculated. This is done 
by placing a calibration receiver at a known position within the 
field which uses its own position, the known positions of the 
transmitters, and the expected phase shift due to the known 
distance 𝑑𝑖 to calculate the value of 𝛷𝑖 for each 𝑇𝑖  (§3.6). 

Transmitters use frequency division multiplexing (FDM) for 
concurrent transmission of all signals over the shared medium 
(air). That is, each transmitter 𝑇𝑖  modulates the sinusoidal 
signal onto a unique carrier frequency which allows a receiver 
to demodulate the received signals and, based on the carrier 
frequency, determine which 𝑇𝑖  each signal originated from. 

 

Fig. 2 Overview of process leading to calculation of heliostat 
mirror normal vector. RX and TX represent 

electromagnetic transmitters and receivers, and Mod𝒊 and 
DMod𝒊 represent modulators and demodulators for the 

carrier frequency of transmitter T𝒊. 

3. Development of Core Aspects 

3.1. Phase Difference Calculation 
Three methods are considered for the calculation of phase 
difference between two sinusoids of matching frequency: dot 
product, dot product with noise compensation, and the Hilbert 
transform. Omitted methods include the discrete Fourier 
transform due to the problem of spectral leakage, and cross 
correlation due to the maximum achievable accuracy being 
limited by sampling frequency. The two signals are defined as  

𝑠1(𝑡) = 𝑎1 cos�ω0t + 𝜙1(𝑡)� + 𝑛1(𝑡) 
𝑠2(𝑡) = 𝑎2 cos�𝜔0𝑡 + 𝜙2(𝑡)� + 𝑛2(𝑡), 

where 𝑛1(𝑡) and 𝑛2(𝑡) are ergodic random variables 
representing noise that is uncorrelated with the sinusoids. 



    

3.1.1. Dot Product 

One of the simplest ways to calculate the phase difference 
between two sinusoids is by using the dot product. Let 𝑠1 be a 
vector containing 𝑆 samples from 𝑠1(𝑡) sampled at a frequency 
of 1/𝑇, where the 𝑖th sample is given by  

𝑠1[𝑖] = 𝑠1(𝑖𝑇), 0 ≤ 𝑖 ≤ 𝑆 − 1, 
and let 𝑠2 be given similarly. When 𝜙1(𝑡) and 𝜙2(𝑡) remain 
constant, then it follows from the dot product that  

𝑠1 · 𝑠2 = ‖𝑠1‖ ‖𝑠2‖ cos(𝜙21), 
where ‖𝑠1‖ and ‖𝑠2‖ denote the sizes of vectors 𝑠1 and 𝑠2, 
respectively, and 𝜙21 is the phase difference between the two 
sinusoids. The equation is solved for 𝜙21 as follows:  

𝜙21 = |𝜙2 − 𝜙1| = acos�
𝑠1 · 𝑠2

‖𝑠1‖ ‖𝑠2‖
� . 

3.1.2. Dot Product with Noise Compensation 

One shortcoming of the dot product method is that it does not 
account for noise. When the mean E[𝑛] and variance Var[𝑛] of 
the noise is known, it is possible to compensate for the effect of 
noise on the calculated phase difference. 

Multiplication of 𝑠1(𝑡) and 𝑠2(𝑡) yields  
𝑠(𝑡) = [𝑠1(𝑡)][𝑠2(𝑡)] 

=
𝑎1𝑎2

2
cos(𝜙2 − 𝜙1) +

𝑎1𝑎2
2

cos(2𝜔0𝑡 + 𝜙2 + 𝜙1) 

               +𝑎1 cos(𝜔0𝑡 + 𝜙1) 𝑛2(𝑡) 
               +𝑎2 cos(𝜔0𝑡 + 𝜙2) 𝑛1(𝑡) + 𝑛1(𝑡)𝑛2(𝑡). 

The mean of the signal 𝑠(𝑡) is calculated as  

𝑠𝑢 =
1
𝑇
� 𝑠(𝑡)d𝑡
𝑇

0
=
𝑎1𝑎2

2
cos(𝜙2 − 𝜙1) + E[𝑛1𝑛2], 

which follows from the fact that the mean of the periodic terms 
approach zero as 𝑇 becomes sufficiently large, and where 
E[𝑛1𝑛2] is the expected value (mean) of the product of 𝑛1 and 
𝑛2. Rearranging the terms gives the phase difference as  

𝜙21 = |𝜙2 − 𝜙1| = acos�
2(𝑠𝑢 − E[𝑛1𝑛2])

𝑎1𝑎2
� . 

The amplitudes of the original signals, 𝑎1 and 𝑎2, are calculated 
by multiplying the original signal by itself, taking the average, 
and then rearranging the terms:  

[𝑠1(𝑡)]𝑢2 =
1
𝑇
� [𝑠1(𝑡)]2d𝑡
𝑇

0
=
𝑎12

2
+ E[𝑛12], 

from which it follows that  

𝑎1 = �2([𝑠1(𝑡)]𝑢2 − E[𝑛12]),          E[𝑛12] = Var[𝑛1] + E[𝑛1]2, 

where Var[𝑛1] is the variance of 𝑛1. The value of 𝑎2 is 
calculated similarly. By letting 𝑢12 = E[𝑛1𝑛2], 𝑢1 = E[𝑛1], 
𝑢2 = E[𝑛2], 𝜎12 = Var[𝑛1], and 𝜎22 = Var[𝑛2], the final 
equation for the phase difference becomes  

𝜙21 = acos�
𝑠𝑢 − 𝑢12

�([𝑠1(𝑡)]𝑢2 − 𝜎12 − 𝑢12)([𝑠2(𝑡)]𝑢2 − 𝜎22 − 𝑢22)
�. 

It is important to note that neither this nor the previous method 
includes the sign of the angle 𝜙21. 

3.1.3. Hilbert Transform 

Let �̂�1(𝑡) and �̂�2(𝑡) denote the Hilbert transforms of 𝑠1(𝑡) and 
𝑠2(𝑡), respectively, given by  

�̂�1(𝑡) = 𝑎1 sin�ω0t + 𝜙1(𝑡)� + 𝑛�1(𝑡) 
�̂�2(𝑡) = 𝑎2 sin�𝜔0𝑡 + 𝜙2(𝑡)� + 𝑛�2(𝑡), 

and let ℎ1(𝑡) and ℎ2(𝑡) be the positive analytical signals  
ℎ1(𝑡) = 𝑠1(𝑡) + 𝑗�̂�1(𝑡), ℎ2(𝑡) = 𝑠2(𝑡) + 𝑗�̂�2(𝑡). 

The analytical signals can be viewed as rotating vectors with 
angle Θ(𝑡) = 𝜔0𝑡 + 𝜙(𝑡) + 𝛾(𝑡), where 𝛾(𝑡) is the variation in 
phase due to noise. The angle Θ of a complex signal ℎ is  

Θ = arg(ℎ) = atan2�imag(ℎ),real(ℎ)�, 
which leads to the difference in angle between two complex 
signals ℎ1(𝑡) and ℎ2(𝑡) being calculated as  
Θ2(𝑡) − Θ1(𝑡) = 𝜙2(𝑡) − 𝜙1(𝑡) + 𝛾2(𝑡) − 𝛾1(𝑡) 

= atan2��̂�2(𝑡), 𝑠2(𝑡)� − atan2��̂�1(𝑡), 𝑠1(𝑡)�. 
When the signal-to-noise ratio is large enough,  

𝛾2(𝑡) − 𝛾1(𝑡) ≈ 0, 
𝜙2(𝑡) − 𝜙1(𝑡) = atan��̂�2(𝑡), 𝑠2(𝑡)� − atan��̂�1(𝑡), 𝑠1(𝑡)�. 

Additionally, if the phase difference is assumed to be constant, 
the accuracy of the results can be improved by averaging over 
time. Using phasor geometry to account for phase wrapping, 
the averages of the real and imaginary components of the phase 
difference are calculated as  

𝑥 =
1
𝑇
� cos�𝜙2(𝑡) − 𝜙1(𝑡)� d𝑡
𝑇

0
 

𝑦 =
1
𝑇
� sin�𝜙2(𝑡) − 𝜙1(𝑡)� d𝑡
𝑇

0
. 

The resulting phase difference, averaged over time, is then  
𝜙21 = 𝜙2 − 𝜙1 = atan(𝑦, 𝑥). 

3.2. Translating Phase Difference to Distance 
A phase difference 𝜙𝑖 − 𝜙𝑗 ∈ (−𝜋,𝜋] between two sinusoids 
with matching frequency and wavelength 𝜆 is translated into 
distance by the equation  

𝑑𝑖 − 𝑑𝑗 = −�
𝜙𝑖 − 𝜙𝑗 − �𝛷𝑖 − 𝛷𝑗�

2𝜋
𝜆 + 𝑛𝜆� , 

where 𝑑𝑖 − 𝑑𝑗 represents the distance between the receiver and 
transmitter 𝑇𝑖  relative to the distance between the receiver and 
transmitter 𝑇𝑗. A negative value of 𝜙𝑖 − 𝜙𝑗 indicates that 𝑇𝑗 is 
further away than 𝑇𝑖 , hence the minus prefix. 

 



    

The 𝑛𝜆 term indicates that any number of full wavelengths may 
be added to the result due to the periodic nature of a sinusoidal 
wave. For example, a distance of 𝜆/4 and 5𝜆/4 will both yield 
a phase difference of 𝜋/2. When the position of the receiver is 
approximately known, the correct value of 𝑛 can be substituted 
into the equation. Another solution is to transmit more than one 
sinusoid such that the sinusoid with a longer wavelength is used 
to approximate while the sinusoid with a shorter wavelength is 
used to accurately determine the receiver position. In this paper 
it is assumed that the wavelength 𝜆 is longer than the diameter 
of the field such that 𝑛 is always zero. 

3.3. Transmitter Layout 
There are many factors to consider for the optimal layout of 
transmitter towers. Examples of such factors include the 
distances between transmitters and receivers (greater distances 
require higher signal power) and line of sight (the changing 
orientation of a heliostat limits the set of transmitters it has line 
of sight to). Taking into account all possible factors is a study 
in its own right. The only factor considered here is the 
sensitivity of the transmitter geometry to noise. 

3.4. Position Calculation 
The calculated position 𝑅�  of a receiver at 𝑅 is determined using 
multilateration. Let there be 𝑁 transmitters located at known 
positions 𝑇𝑖 , with the distance between each 𝑇𝑖  and 𝑅 given by 
𝑑𝑖, and the distance between each 𝑇𝑖  and  𝑅�  given by  �̂�𝑖. Due 
to noise and other factors, a small error 𝜖𝑖 = �̂�𝑖 − 𝑑𝑖 exists, 
which is minimised using a non-linear least squares algorithm. 

When 𝑑𝑖 is measured relative to a reference distance 𝑑𝑟 instead 
of being an absolute measurement, then 𝑑𝑖 = 𝑑𝑟 + Δ𝑖, where 𝑑𝑟 
is the reference distance and Δ𝑖  is the difference between 𝑑𝑖 and 
𝑑𝑟. When relative distances are used, 𝑁 ≥ 𝐷 + 2, where 𝐷 is 
the number of dimensions. For three dimensions, 𝑁 ≥ 5. 

The error function is properly defined as  
𝜖𝑖(𝑥,𝑦, 𝑧) =  �̂�𝑖 − 𝑑𝑖  

=  ��𝑥 − 𝑇𝑖,𝑥�
2 + �𝑦 − 𝑇𝑖,𝑦�

2 + �𝑧 − 𝑇𝑖,𝑧�
2 − (𝑑𝑟 + Δ𝑖), 

where 𝑥, 𝑦 and 𝑧 are the calculated position of the receiver 𝑅� . 
The goal is to minimise the sum of the squares of the errors  

𝐸(𝑥,𝑦, 𝑧) = � 𝜖𝑖(𝑥,𝑦, 𝑧)2
𝑁

𝑖=1
. 

Differentiating 𝐸 with respect to 𝑥 yields  
𝜕𝐸
𝜕𝑥

= 2� 𝜖𝑖
𝜕𝜖𝑖
𝜕𝑥

𝑁

𝑖=1
 

with 𝜕𝐸/𝜕𝑦, 𝜕𝐸/𝜕𝑧 and 𝜕𝐸/𝜕𝑑𝑟 obtained similarly. The 
derivative of 𝜖𝑖 with respect to 𝑥 is given by  

𝜕𝜖𝑖
𝜕𝑥

=
𝑥 − 𝑇𝑖 ,𝑥

��𝑥 − 𝑇𝑖,𝑥�
2 + �𝑦 − 𝑇𝑖,𝑦�

2 + �𝑧 − 𝑇𝑖,𝑧�
2

=
𝑥 − 𝑇𝑖,𝑥

𝜖𝑖 + 𝑑𝑟 + Δ𝑖
 

with 𝜕𝜖𝑖/𝜕𝑦, 𝜕𝜖𝑖/𝜕𝑧 obtained similarly, and 𝜕𝜖𝑖/𝜕𝑑𝑟 = −1. 

Introducing the vectors 𝜖, �⃗� and the Jacobian matrix 𝑱, leads to  
�⃗� = 2𝑱𝑇𝜖, 

�⃗� =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝜕𝐸
𝜕𝑥
𝜕𝐸
𝜕𝑦
𝜕𝐸
𝜕𝑧
𝜕𝐸
𝜕𝑑𝑟⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

, 𝑱 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝜕𝜖1
𝜕𝑥

𝜕𝜖1
𝜕𝑦

𝜕𝜖2
𝜕𝑥

𝜕𝜖2
𝜕𝑦

𝜕𝜖1
𝜕𝑧

𝜕𝜖1
𝜕𝑑𝑟

𝜕𝜖2
𝜕𝑧

𝜕𝜖2
𝜕𝑑𝑟

⋮ ⋮
𝜕𝜖𝑁
𝜕𝑥

𝜕𝜖𝑁
𝜕𝑦

⋮ ⋮
𝜕𝜖𝑁
𝜕𝑧

𝜕𝜖𝑁
𝜕𝑑𝑟⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

, 𝜖 = �

𝜖1
𝜖2
⋮
𝜖𝑁

�. 

Using the vector  
𝛽 = [𝑥 𝑦 𝑧 𝑑𝑟]𝑇 , 

where 𝑥, 𝑦 and 𝑧 are the calculated position of 𝑅� , Newton 
iteration gives  

𝛽𝑘+1 = 𝛽𝑘 − (𝑱𝑘𝑇𝑱𝑘)−1𝑱𝑘𝑇𝜖𝑘, 
where 𝛽𝑘 denotes the 𝑘th approximate solution. The subscript 𝑘 
in 𝑱 and 𝜖 means that theses quantities are evaluated at 𝛽𝑘. Also 
given is  

𝑱𝑇𝑱 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ �

�𝑥 − 𝑇𝑖 ,𝑥�
2

(𝜖𝑖 + 𝑑𝑟 + Δ𝑖)2

𝑁

𝑖=1

�
�𝑥 − 𝑇𝑖,𝑥��𝑦 − 𝑇𝑖,𝑦�

(𝜖𝑖 + 𝑑𝑟 + Δ𝑖)2

𝑁

𝑖=1

�
�𝑥 − 𝑇𝑖,𝑥��𝑦 − 𝑇𝑖,𝑦�

(𝜖𝑖 + 𝑑𝑟 + Δ𝑖)2

𝑁

𝑖=1

�
�𝑦 − 𝑇𝑖,𝑦�

2

(𝜖𝑖 + 𝑑𝑟 + Δ𝑖)2

𝑁

𝑖=1

�
�𝑥 − 𝑇𝑖,𝑥��𝑧 − 𝑇𝑖,𝑧�

(𝜖𝑖 + 𝑑𝑟 + Δ𝑖)2

𝑁

𝑖=1

�
�𝑦 − 𝑇𝑖,𝑦��𝑧 − 𝑇𝑖,𝑧�

(𝜖𝑖 + 𝑑𝑟 + Δ𝑖)2

𝑁

𝑖=1

�
−�𝑥 − 𝑇𝑖,𝑥�
𝜖𝑖 + 𝑑𝑟 + Δ𝑖

𝑁

𝑖=1

�
−�𝑦 − 𝑇𝑖,𝑦�
𝜖𝑖 + 𝑑𝑟 + Δ𝑖

𝑁

𝑖=1

 

                   

�
�𝑥 − 𝑇𝑖,𝑥��𝑧 − 𝑇𝑖,𝑧�

(𝜖𝑖 + 𝑑𝑟 + Δ𝑖)2

𝑁

𝑖=1

�
−�𝑥 − 𝑇𝑖,𝑥�
𝜖𝑖 + 𝑑𝑟 + Δ𝑖

𝑁

𝑖=1

�
�𝑦 − 𝑇𝑖,𝑦��𝑧 − 𝑇𝑖,𝑧�

(𝜖𝑖 + 𝑑𝑟 + Δ𝑖)2

𝑁

𝑖=1

�
−�𝑦 − 𝑇𝑖,𝑦�
𝜖𝑖 + 𝑑𝑟 + Δ𝑖

𝑁

𝑖=1

�
�𝑧 − 𝑇𝑖,𝑧�

2

(𝜖𝑖 + 𝑑𝑟 + Δ𝑖)2

𝑁

𝑖=1

�
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3.5. Receiver Plane Normal Vector 
When the positions of three points (𝑅1,𝑅2,𝑅3) on the mirror 
plane are known, the unit vector 𝑢�⃗  normal to the plane is 
calculated using the cross product as  

�⃗� = (𝑅2 − 𝑅1) × (𝑅3 − 𝑅1), 𝑢�⃗ =
�⃗�
‖�⃗�‖

. 

When the receivers are numerically arranged counter-clockwise 
as viewed from the front, then 𝑢�⃗  is in the forward facing 
direction of the heliostat, otherwise it is backwards. 

3.6. Electronic Phase Delay Calculation 
The calibration receiver at 𝑅𝑐 calculates the phase differences 
of the signals it receives in exactly the same way as any other 
receiver does. The value of the phase shift 𝛷𝑖 from the central 
oscillator to transmitter 𝑇𝑖  is then equal to the sum of the 
expected phase shift due to the receiver’s distance from 𝑇𝑖  and 
the measured phase difference 𝜙𝑖:  

𝑑𝑖 = ��𝑇𝑖,𝑥 − 𝑅𝑐,𝑥�
2 + �𝑇𝑖,𝑦 − 𝑅𝑐,𝑦�

2 + �𝑇𝑖,𝑧 − 𝑅𝑐,𝑧�
2, 

𝛷𝑖 =
2𝜋𝑑𝑖
𝜆

+ 𝜙𝑖 . 

The value of 𝛷𝑖 is wrapped to fit in the range (−𝜋,𝜋]. 

4. Results 

4.1. Phase Difference Calculation 
Fig. 3, Fig. 4 and Fig. 5 show the accuracy with which the 
phase difference between two sinusoids of matching frequency 
can be calculated using the methods described in section 3.1. 
All simulations assume zero-mean noise with constant power 
spectral density (PSD). The signal-to-noise ratio (SNR) is 
indicated on the x-axis and the standard deviation of the error is 
indicated on the y-axis in degrees. The SNR is the same for 
both signals, except where indicated otherwise. Table 1 
clarifies the legend used in the figures. 

Key Meaning 
S Number of samples. 
SPC Samples per cycle, which is a measure of the 

normalised sampling frequency. 
B Equivalent normalised noise bandwidth. No filtering 

is indicated by ‘none’. 
SNR2 Indicates that the SNR of the second signal is SNR2-

times more than the SNR of the first signal. 

Table 1 Clarification of the legends for Figures 3, 4 and 5. 

Recall that of the three methods investigated, only the Hilbert 
Transform method correctly includes the sign of the angle 𝜙21. 
It therefore only makes sense to record the absolute value of the 
error for the other two methods, which would inevitably 
introduce a positive non-zero bias in the error mean. This 
makes comparison difficult and is avoided by assuming the 

correct sign for 𝜙21 in the simulation for these methods. 

 

Fig. 3 Performance of Dot Product method. 

 

Fig. 4 Performance of Dot Product with Noise 
Compensation method. 

 

Fig. 5 Performance of Hilbert Transform method. 

The resulting error mean for all graphs is approximately zero 
(mean ≪ standard deviation) so the standard deviation of the 
error is used as the metric to compare results. All figures 
clearly show a decrease in the resulting phase difference error 
as the SNR is increased. Fig. 3 shows that the sampling 
frequency, number of samples and filter bandwidth have little 
to no effect on the results of the first method. For the latter two 
methods, however, it is clear from Fig. 4 and Fig. 5 that an 
increase in the number of samples as well as a wider bandwidth 
(while maintaining the same SNR, thus lower PSD) both 
contribute towards a smaller error. As expected, the accuracy of 
the dot product method is significantly increased when noise 
compensation is added, to the point where it is almost identical 



    

to the accuracy of the Hilbert transform method. Keep in mind, 
however, that the former requires the noise characteristics to be 
exactly known, whereas the latter has no such requirement. The 
results in Fig. 4 quickly approach those of Fig. 3 (or worse) 
when the noise characterisation contains errors. Fig. 6 shows 
how the accuracy of the Hilbert transform method is 
independent of the phase difference, whereas the other methods 
are more sensitive to noise at certain phase differences. The 
Hilbert transform is clearly superior to the other methods. 

 

Fig. 6 Sensitivity of methods at various phase differences 
with SNR = 10. 

4.2. Transmitter Layout 
The placement of transmitter towers plays an important part in 
the overall accuracy of the system. Poor transmitter placement 
can result in large receiver position errors even when phase 
difference errors are small. From experimentation with the 
layout of transmitter towers the following guidelines for their 
optimal placement emerge: 

• Any two transmitters should not be placed close to or 
on the same location. 

• Any three transmitters should not be placed close to or 
on the same line. 

• Any four transmitters should not be placed close to or 
on the same plane.  

• Transmitters should surround and be placed outside 
the field of receivers, not within. 

The last guideline is especially important when working with 
relative distances as the error rapidly increases once a receiver 
is outside the enclosure of transmitters as shown in Fig. 7. The 
optimal layout of transmitters in two dimensions is equally 
distributed on a circle surrounding the field of receivers. For 
three dimensions, the optimal layout is equally distributed on a 
sphere surrounding the field of receivers. Fig. 7 shows how the 
error on the receiver position is affected by varying the number 
of transmitters and the error on the measured distances. An 
optimal layout for two dimensions is used for simplicity and 
transmitters are equally distributed on a circle with normalised 

radius of unity. It is evident that an increased number of 
transmitters as well as an increased accuracy in the 
measurement of the distances both contribute to a smaller error 
in receiver position. 

 

Fig. 7 Receiver position error as affected by number of 
transmitters and error on measured distances. The number 
of transmitters is 4 (blue), 5 (red), 6 (orange) and 7 (purple).  

For practical reasons an ideal layout may not always be 
possible. One such constraint is the maximum possible height 
of a transmitter tower. The transmitter layout used in the 
remainder of this paper is shown in Fig. 8 and described in 
Table 2. Note that this does not necessarily represent an optimal 
layout as transmitter positions are constrained by both a 
minimum and a maximum height. The layout represents a 
flattened, elevated dome above the heliostat field. Coordinates 
are normalised to a field with radius of unity to enable the 
prediction of results for a larger field by simply scaling the 
normalised results. The performance of this layout is analysed 
in the following section. 

TX # X Y Z 
1 1 0 0.2 
2 0.5 0.866 0.3 
3 -0.5 0.866 0.2 
4 -1 0 0.3 
5 -0.5 -0.866 0.2 
6 0.5 -0.866 0.3 
7 0.433 0.25 0.4 
8 -0.433 0.25 0.4 
9 0 -0.5 0.4 
10 0 0 0.5 

Table 2 Normalised 
coordinates for transmitter 

layout. 

 

Fig. 8 Top view of 
transmitter layout. Colours 

correlate to height. 

4.3. Position Calculation 
The simulated receiver position error for the transmitter layout 
proposed in Table 2 is shown in Fig. 9. The results show that 
for the proposed layout, an error on the distance measurement 
(𝜎Δ) will result in a position RMS error 𝜖𝑅 of 0.99𝜎Δ at the 



    

centre of the field and 1.85𝜎Δ at the edge. The error at the edge 
of the field can be reduced by increasing the transmitter radius, 
while the overall error can be reduced by adding more 
transmitters and optimising the transmitter layout. 

 

Fig. 9 Receiver position error for proposed transmitter 
layout in Table 2 for varying error on measured distances. 

4.4. Receiver Plane Normal Vector 
Fig. 10 shows how the accuracy with which the receiver plane 
normal can be determined is affected by errors in the estimated 
receiver positions. Three receivers, all a distance 𝑑𝑅 apart, form 
the receiver plane and the RMS error in each receiver position 
is 𝜖𝑅. The relationship 𝑑𝑅/𝜖𝑅  is shown on the x-axis, with the 
resulting error of the plane normal on the y-axis. Fig. 10 shows 
clearly that the plane normal error decreases as 𝑑𝑅/𝜖𝑅  
increases, that is, as either the position error decreases or the 
receivers are placed a greater distance apart. From Fig. 10, the 
RMS of the tracking error 𝑇𝑅𝑀𝑆 is approximated by  

𝑇𝑅𝑀𝑆 = �1000�4/3�
𝜖𝑅
𝑑𝑅

, 

where 𝑇𝑅𝑀𝑆 represents the overall tracking accuracy of the 
system, in milliradians. For a tracking error of less than one 
milliradian, a 𝑑𝑅/𝜖𝑅 relationship of above ~1150 is required. 
The results assume that the receiver position errors are 
uncorrelated, though it can be shown that a positive correlation 
leads to a smaller RMS tracking error 𝑇𝑅𝑀𝑆 for the same 𝑑𝑅/𝜖𝑅. 

 

Fig. 10 Receiver plane normal error as a function of 
receiver position error and inter-receiver distance. 

 

4.5. Overall 
The combined performance of all the previously discussed 
components is shown in Fig. 11 with the system parameters in 
the caption. The figure shows that an RMS tracking error of 
less than 10 milliradians is achievable with 100k samples and 
that the error approaches the 1 milliradian mark as the number 
of samples is increased. The maximum value shown for 𝑆 is 
106 samples, though this number can be increased until the 
desired accuracy is achieved. 

 

Fig. 11 Overall tracking error with transmitters as in Table 
2. 𝑺𝑷𝑪 = 𝟏𝟎, 𝑺𝑵𝑹 = 𝟏𝟎𝟓, 𝑩 = 𝟎.𝟎𝟒, 𝝀 = 𝟒, 𝒅𝑹 = 𝟎.𝟎𝟏𝟕𝟑. 

Simulated graphs are solid and predictions are dashed.  

The above figure also shows the accuracy with which the final 
error can be predicted, given the error of the individual 
components and the system parameters. The equation that 
accurately describes the variance of the error of the Hilbert 
transform method shown in Fig. 5 is given by  

𝜎𝜙2 =
1
𝑆
�

1
𝐵1(SNR1) +

1
𝐵2(SNR2)� , 

where 𝑆 is the number of samples, 𝐵𝑖  is the equivalent 
normalised noise bandwidth (× ~2/𝑓𝑠) of signal 𝑖 with 
sampling frequency 𝑓𝑠, and SNR𝑖  is the signal to noise ratio of 
signal 𝑖. With the given parameters and 𝑆 = 106 samples, the 
tracking error at the edge of the field is predicted by calculating 
the phase difference error variance 𝜎𝜙2 = 4.65 × 10−10, giving 
a distance difference error variance 𝜎Δ2 = (𝜆/2𝜋)2𝜎𝜙2 = 1.89 ×
10−10, giving a position RMS error of 𝜖𝑅 = 1.85𝜎Δ = 2.54 ×
10−5, so that 𝑑𝑅/𝜖𝑅 = 682 which results in a tracking RMS 
error of 𝑇𝑅𝑀𝑆 = 1000�4/3𝜖𝑅/𝑑𝑅 = 1.69 milliradians. The 
difference between the predicted and simulated results is due to 
a small positive correlation in the simulated receiver position 
errors which reduces the tracking error. The same results can be 
applied to a larger field by scaling the transmitter coordinates in 
Table 2, signal wavelength 𝜆 and inter-receiver distance 𝑑𝑅 by 
a factor 𝑥. For example if 𝑥 = 100, then each transmitter 
coordinate is multiplied by 𝑥 such that the field radius is 100, 
𝜆 = 400, and 𝑑𝑅 = 1.73. 



    

5. Conclusion 

The results in the previous section show that the most important 
factors for an increased tracking accuracy are an increased 
number of samples 𝑆, an increased signal-to-noise ratio 𝑆𝑁𝑅, a 
smaller wavelength 𝜆, and a larger inter-receiver distance 𝑑𝑅. 
The importance of transmitter placement is also shown. A 
properly optimised transmitter layout will result in an even 
smaller tracking error. 

A larger 𝑑𝑅 favours larger heliostats over smaller ones. Since 
heliostats need to update their orientations multiple times per 
minute, a higher sampling rate is favourable as it will yield a 
larger number of samples within the allotted time. Using 
multiple wavelengths to approximate and pinpoint receiver 
positions introduces additional complexity but offers 
considerable increases in accuracy. Increasing the number of 
transmitters also increases accuracy, albeit only marginally. 

While this paper focuses mainly on one of the unavoidable 
error sources, namely phase difference error due to noise, other 
possible error sources also exist, such as errors in the electronic 
phase delay 𝛷, errors in the transmitter positions, and other 
hardware-specific errors, the effects of which will most 
certainly lead to an increased tracking error. 

From a financial viewpoint the proposed method offers 
significant advantages. While the required infrastructure may 
be expensive, it is also minimal: only the central oscillator and 
transmitter towers. The important consideration is the added 
cost per heliostat. This amounts to only the three 
electromagnetic receivers, some electronics, and a processing 
unit, which in most cases is already present. 

In the case where the time between heliostat orientation updates 
limits the number of samples to such an extent that a tracking 
error of less than one milliradian is unachievable, the system 
may become unsuitable for real-time use. It can, however, still 
be used to aid in the calibration process. The orientation of a 
heliostat is made stationary for as long as it takes to obtain the 
required amount of samples, after which its normal vector is 
calculated. This will still improve the required time for a full 
field calibration from three weeks to a few minutes. Another 
application of the system is the localisation of any object within 
the heliostat field by simply fixing one of the electromagnetic 
receivers to the object, provided that it can remain stationary 
long enough to obtain the required number of samples. 

Although the results in this paper are only simulated, they 
indicate that a tracking error of one milliradian or less is 
theoretically achievable which is promising enough for the 
method to merit further investigation. Future work includes 
verifying the simulated results with laboratory experiments 

leading up to field measurements. 
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