
    

 

 

LUMPED METHOD FOR CALCULATING THE OPTICAL EFFICIENCY 

OF RADIALLY STAGGERED HELIOSTAT FIELDS 

J.E.  Hoffmann 

Dept. of Mechanical & Mechatronic Engineering, 

Stellenbosch University, Stellenbosch, South Africa; Phone +27 21 808 3554; E-mail (hoffmaj@sun.ac.za) 

 

 

Abstract 

Central receiver plant is slowly gaining acceptance in the 

energy market, raising the need of for planning authorities and 

engineers to do quick preliminary analyses of such plant. A 

fast, reasonably accurate method, based on geometrical 

projection of a heliostat's image on its immediate neighbours, is 

presented to calculate the optical (cosine, blocking and shading) 

efficiency for a radially staggered surround heliostat field based 

upon a lumped geometric approach. Blocking and shading is 

predicted, using calculation stencils of four and seven heliostats 

respectively. The model was used to simulate the solar field of 

the Gemasolar solar power plant. The model is in reasonable 

agreement with limited published data during normal plant 

operating hours. The model is rather optimistic in predicting 

shading losses close to sunrise and sunset, as it neglects the 

shading contribution from heliostats outside the calculation 

stencil. However, the solar irradiation decreases as the secant of 

the zenith angle, reducing the overall effect of the error at large 

zenith angle. Expanding the shading stencil decreased the 

shading errors close to sunset and sunrise significantly, but at 

the expense of computational effort. The method should be 

useful for pre-feasibility studies and macro decision making, 

but is no replacement for detailed design tools. 

Keywords: heliostat efficiency, lumped model, image projection 

1. Introduction 

Commercial central receiver solar power plants are slowly 

making an impact on the energy scene.  The 20 MWe 

Gemasolar [1] power plant in Spain was commissioned in 

2011, the 377 MWe Ivanpah [2] plant in 2013, whilst the 110 

MWe Crescent Dunes [3] plant is scheduled to start producing 

electricity towards the end of 2014, and the 50 MWe Khi-1 [4] 

plant early in 2015. 

The solar field of a large central receiver plant comprise of 

thousands of heliostats.  Each heliostat’s position is carefully 

optimized, since the heliostat field typically accounts for about 

40 % of the total plant cost.  Calculating the annual 

performance of the field, and in the extreme, optimizing the 

field layout for a new plant can take days of computation.  This 

expense is often not warranted, and the accuracy not required 

during preliminary planning. 

Methods and tools to calculate and optimize the performance of 

heliostat fields abound [5 – 8].  These methods are accurate, yet 

computationally expensive, making them ill-suited for initial 

calculations.  During the pre-feasibility phase of such a project, 

plant parameters are not yet decided, and a computationally fast 

method is required to evaluate different designs, as 

performance calculations often involves integration over a 

typical meteorological year.  Such a method should faithfully 

capture physics, and be reasonably accurate.  Once the design 

has crystallized, detailed design and performance assessment 

tools are required.  The latter is often developed in-house by 

plant designers, and is not disclosed in the open literature. 

Design tools typically rely on ray tracing, convolution methods 

or surface tessellation techniques.  Hence, numerous 

calculations are required for each individual heliostat at any 

particular instance of time.  Further limitations may be 

imposed.  The CAMPO [7] code is limited to regular heliostat 

fields, but Lucthman et al [8] has shown that these may not 

necessarily be optimal.  Leonardi and D’Aguanno [6] indicated 

that field performance is dominated by zenith angle, and to a 

lesser degree by azimuth angle.  This view is reinforced by 

Gauche et al [9].  Haman et al [10] calculated the projection of 

the four corners of a heliostat onto another to find the shading 

and blocking losses, whilst Gauche et al [11] considered the 

projection of the heliostat onto a copy of itself for the same 

purpose.  Gauche et al [11] has shown that field performance 

can be predicted reasonably accurate by dividing the field into a 

number of computational cells, with a reference heliostat 

representing the average performance of all heliostats in that 

particular cell.  In their work, they considered a square field, 

with an in-line heliostat lay-out on a Cartesian grid.  Circular 

and/or irregular fields can be simulated by changing the number 

of heliostats represented by computational cell.  This has 

reduced the calculation load drastically, yet their results were 

within 10 % of those predicted by ray tracing. 
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This paper expands the work of Gauche et al [11] to radially 

staggered fields, but also boroughs ideas from Leonardi and 

and D’Aguanno [6] and Haman et al [10].  It presents a fast, 

albeit approximate method to evaluate the optical efficiency of 

a pre-determined heliostat field for a central receiver solar 

power plant.  The method should be useful for pre-feasibility 

studies and macro decision making, but is no replacement for 

detailed design tools. 

2. Model description 

The method presumes a surround heliostat field, with origin at 

the central receiver, the x-coordinate pointing due east, y north 

and z up.  For mathematical expedience, z = 0 corresponds to 

the centre point of the heliostats.  Some key plant parameters, 

such as site coordinates, number and size of heliostats is 

assumed to be known a priori.  A regular (constant offset 

between heliostats in the radial and circumferential direction) 

radially staggered arrangement is adopted within any individual 

cell.  All the heliostats inside the cell are lumped together and 

are represented by a single heliostat at the cell centre.  Blocking 

and shading are calculated from vector algebra for a stencil of 

three (blocking) and six (shading) neighbouring heliostats 

surrounding the representative heliostat.  Neighbouring 

heliostats have and identical spatial orientation as the 

representative heliostat, except for their offset in the radial and 

circumferential directions.  Furthermore, blocking and shading 

calculations require accurate information about the sun’s 

position at all times.  Irregular fields can be mimicked by 

adjusting the number of heliostats in each lumped cell 

accordingly. 

2.1 Solar angles 

Solar radiation is calculated from a simple model, based upon 

the local solar time, and a solar year starting on the winter 

solstice in the Northern Hemisphere.  According to Duffie and 

Beckman [12], the sun’s zenith angle is given by 

𝜃 =  cos−1{cos𝜓 cos 𝛿 cosΩ + sin𝜓 sin 𝛿} … (1) 

with  the latitude,  the sun’s declination angle (here 

expressed in degrees) 

𝛿 =  −23.45 cos (
2𝜋𝑁

365
) … (2) 

N is the number of days since the summer solstice.  The hour 

angle  ( = 0 at solar noon, negative in the morning and 

positive in the afternoon), given by 

Ω =  𝜋 (
ℎ

12
− 1) … (3) 

Here, h is the local solar time.  The proposed model aims to 

provide a fast and reasonably robust estimate of optical field 

efficiency.  Reasonable estimates of the solar angles, rather 

than direct normal irradiation (DNI) is required.  Nowadays, 

DNI data is available for almost anywhere, but the following 

approximate model was adopted for its additional mathematical 

insights.  In the absence of actual DNI data, the DNI can be 

approximated by 

𝐷𝑁𝐼 =  𝐼0𝑒
−𝛼 cos𝜃⁄  … (4) 

with I0 the solar constant.  The turbidity factor  is tuned to 

yield the correct average annual DNI for any specific site, or a 

similar nearby site for which the DNI is known.  In essence, the 

model assumes cloudless skies every day of the year, but the 

maximum DNI is toned down to account for occasional 

overcast conditions.  It does not take seasonal variations in the 

turbidity factor into account. 

The sun’s azimuth angle is calculated from [12] 

𝜙 =  𝑠𝑖𝑔𝑛(Ω) |cos−1 {
cos 𝜃 sin𝜓− sin 𝛿

sin𝜃 cos𝜓
}| … (5) 

2.2 Heliostat Field 

The field is divided into discrete zones, with a representative 

heliostat at the centre of each zone [11].  Each zone contains a 

number of heliostats identical to the representative heliostat at 

the centroid of the zone, as shown in figure 1.  The radial and 

circumferential spacing of the heliostats inside each zone is 

kept constant, but the spacing may vary from zone to zone, as 

shown in figure 2.  Taking advantage of the inherent circular 

symmetry of a surround field, sparsely populated zones, say in 

the south field, are treated the same as the more densely 

populated north field (assuming a plant in the Northern 

Hemisphere).  A weighting function, proportional to the actual 

number of heliostats in the zone, is introduced to account for 

sparsely populated zones. 

 

 

Figure 1.  Aerial photograph of a quarter field of the 

Gemasolar Plant (Google Maps, [13]), and division into 

computational cells.  Shading stencil is shown in one 

representative cell. 



    

2.3 Cosine efficiency 

The cosine efficiency depends on the heliostat orientation 

relative to an incoming ray from the sun, and is given by 

𝜂𝑐𝑜𝑠 = 𝑐𝑜𝑠𝜑 … (6) 

with 

𝜑 = 0.5 cos−1(𝑇⃗ ∙ 𝑆 ) … (7) 

with 𝑇⃗  the unit vector pointing from the reference heliostat to 

the receiver, and 𝑆  the unit vector pointing at the sun.  The 

latter is given by [12] 

𝑆 =  cos𝜙 sin 𝜃 𝒊 + sin𝜙 sin 𝜃 𝒋 + cos 𝜃 𝑘⃗  … (8) 

with 𝑖 , 𝑗  and 𝑘⃗  unit vectors pointing in the pointing in the x- 

(east), y- (north) and z- (up) directions respectively. 

 

 

Figure 2.. Definition sketch for radially staggered field. 

2.4 Blocking Efficiency 

Blocking is calculated on a stencil of 4 heliostats, as shown in 

figure 3 for a heliostat field in the Southern hemisphere.  

Blocking interference is calculated from solid analytic 

geometry, as originally proposed by Sassi [14].  Heliostat 

spacing within each zone is assumed to be known a priori, and 

is typically derived from existing heliostat fields.  As a 

minimum, one should adhere to a spacing that would prevent 

interference between neighbouring heliostats, i.e. 

𝑅 ∆𝜃 >  √𝐻2 + 𝑊2  … (9) 

and 

∆𝑅 >  √𝐻2 + 𝑊2  cos (
∆𝜃

2
) … (10) 

with H the height and W the width of the heliostat. 

 

Staggered fields tend to have a high blocking efficiency, but the 

non-blocking condition set by Siala and Eyaleb [15] is not 

enforced.  The latter typically results in a sparse heliostat field, 

especially far away from the tower.  Such a field will make ill 

use of the available land, and suffer unnecessarily from 

attenuation losses.  The merits of such a field are subject to 

optimization. 

The images of heliostats 2 - 4 are projected onto a plane 

through the centre of heliostat 1 perpendicular to the tower 

vector 𝑇⃗ .  This model assumes a rectangular projection, and the 

distance between the projected centres of heliostats 1 and 2 in 

the projection plane is given by [16] 

|𝑃⃗ 12
′ | =  |𝑃⃗ 12 − (𝑃⃗ 12 ∙  𝑇⃗ )𝑇⃗ | … (11) 

 

 

Figure 3.  Blocking stencil for radially staggered field. 

 

The relative position vector 𝑃⃗ 12 is given by 

𝑃⃗ 12 =  (𝑥2 − 𝑥1)𝒊 +  (𝑦2 − 𝑦1)𝒋 + (𝑧2 − 𝑧1)𝒌⃗⃗  … (12) 

The projection of 𝑃⃗ 12 on the plane with unit normal 𝑇⃗  is 

decomposed into a vertical and horizontal component in the T 

plane.  To find the vertical component, 𝑃⃗ 12
′  is projected onto a 

vertical plane containing 𝑇⃗ .  The plane normal 𝑛⃗  of this plane is 

found by noting that it will also contain the vector pointing 

from the reference heliostat to the base of the tower, 𝑇⃗ ′. 

Hence 

𝑛⃗ =  
𝑇⃗ ×𝑇⃗ ′

|𝑇⃗ ×𝑇⃗ ′|
 … (13) 

and 



    

∆𝐻 = |𝑃⃗ 12
′′ | =  |𝑃⃗ 12

′ − (𝑃⃗ 12
′ ∙ 𝑛⃗ )𝑛⃗ | … (14) 

The horizontal component of this projection in the T plane is 

found from Pythagoras’ hypothesis. 

∆𝑊 = √(|𝑃⃗ 12
′ |)

2
− (∆𝐻)2 … (15) 

The projected image of the heliostat 1 on the T plane is also 

required.  The heliostat normal vector ℎ⃗  is given by 

ℎ⃗ =  
𝑆 ∙𝑇⃗ 

|𝑆 ∙𝑇⃗ |
 … (16) 

It’s projection onto a vertical plane through 𝑇⃗  is 

ℎ⃗ ′ = ℎ⃗ − (ℎ⃗ ∙ 𝑛⃗ )𝑛⃗  … (17) 

Hence, the heliostat is titled at an angle 𝛽 relative to 𝑇⃗  in a 

vertical plane, with 

𝛽 =  cos−1 (
𝑇⃗ ∙ℎ⃗⃗ ′

|𝑇⃗ ∙ℎ⃗⃗ ′|
) … (18) 

The projected height of the heliostat onto the T plane is 

𝐻′ = 𝐻 cos 𝛽 … (19) 

To find the yaw angle, the heliostat normal is projected onto a 

plane with unit vector 𝑚⃗⃗  that is orthogonal to both 𝑇⃗  and 𝑛⃗  

𝑚⃗⃗ =
𝑇⃗ ×𝑛⃗ 

|𝑇⃗ ×𝑛⃗ |
 … (20) 

The projection of the heliostat normal onto this plane is 

ℎ⃗ ′′ = ℎ⃗ − (ℎ⃗ ∙ 𝑚⃗⃗ )𝑚⃗⃗  … (21) 

and the yaw angle is 

𝛾 =  cos−1 (
𝑇⃗ ∙ℎ⃗⃗ ′′

|𝑇⃗ ∙ℎ⃗⃗ ′′|
) … (22) 

Finally, the projected width of the heliostat in the T plane is 

𝑊′ = 𝑊 cos 𝛾 … (23) 

The blocked image is given by (see figure 4) 

𝐴𝑏𝑙 = ∑ max [0, (|𝑊′| − |∆𝑊|)] × max [0, (|𝐻′| − |∆𝐻|)]4
𝑖=2  … 

(24) 

The absolute values “map” the overlapping images onto the 

first quadrant.  The blocking efficiency is 

𝜂𝑏𝑙 =  1 − 
𝐴𝑏𝑙

𝐻′𝑊′ … (25) 

 

Figure 4.  Conceptual model for heliostat mapping for 

shading/blocking. 

2.4 Shading Efficiency 

The same procedure is followed to calculate the shading 

efficiency.  For shading, a stencil of 6 neighbouring heliostats 

is used, as shown in figure 5, and the tower vector is replaced 

by the sun vector.  Only heliostats in front of the reference 

heliostat relative to the sun have the potential to cast a shadow 

onto the reference heliostat. 

The power send to the receiver is found from summation over 

all zones 

𝑃 =  ∑ (∑ 𝜂𝑐𝑜𝑠𝜂𝑏𝑙
𝑚
𝑗=1 𝜂𝑠ℎ𝜂𝑟𝑓𝑁𝑖,𝑗𝐻 × 𝑊 × 𝐷𝑁𝐼)𝑛

𝑖=1  … (26) 

Fouling, reflection, and attenuation losses are lumped into rf, 

which is assumed constant.  Results presented in the next 

section only include the cosine, blocking and shading 

efficiencies.  Ni, j is the number of heliostats in the zone. 

 

Figure 5.  Shading stencil for radially staggered field. 



    

3. Results 

We have assumed a radially staggered surround heliostat field 

on a perfectly flat and horizontal topography, as shown in 

figure 1.  The staggered approximation is representative of the 

outer heliostat field of the Gemasolar plant in Spain [13], but 

not for the inner field.  It would appear that a minimum spacing 

between heliostats in a ring is employed in the inner field.  No 

restriction was placed on the receiver’s ability to absorb energy 

from the heliostat field.  Gemasolar was selected as an example 

since some key parameters [1] and unofficial simulation results 

of its performance are freely available [17, 18 and, 19].  The 

distance of heliostats from the tower was obtained from the 

build-in measurement tool in [13].  Detailed performance data 

from operating commercial plant would probably not be 

released in the near future. 

 

Figure 6.  Radar plot of field efficiency of representative 

heliostats 466 m from tower at plant design point (noon, Spring 

equinox, Northern Hemisphere). 

 

Instantaneous model outputs seem realistic, as shown in figures 

6 and 7, also when compared with the detailed results of 

Ausburger [19].  Hourly model outputs for a full calendar year 

shows that the overall agreement with Gauche et al [9] is good 

for small zenith angles, but rather large deviations occurs for 

zenith angles greater than 70°, as shown in figure 8.  This is to 

be expected, as sunlight will be intercepted by heliostats 

outside the shading stencil when the sun is low above the 

horizon.  Furthermore, the model of Gauche et al is based upon 

an in-line heliostat lay-out in a Cartesian grid.  Hence, all cells 

are likely become aligned with the sun direction under certain 

conditions, leading to a significantly higher shading effect.  

Leonardi and D’Aguanno [6], analysing a densely packed 

heliostat field, also found that the optical efficiency tends to 

zero as   90°.  Their heliostat field has a maximum radius of 

140 m, a tower height of 50 m, and a land coverage factor of 

nearly 58 %. 

 

Figure 7.  Radar plot of shading efficiency of representative 

heliostats 466 m from tower at 07:00 on Summer solstice 

(Northern Hemisphere). 

 

For the Gemasolar plant, land coverage is only about 13 %.  

Their field comprise of staggered heliostats in a Cartesian grid, 

with heliostats around the edges removed to yield a surround 

field.  Hence, their field is somewhat similar to that analysed by 

Gauche et al [11].  In a radially staggered lay-out, alignment 

tends to be more localized at all times.  This is observation is 

corroborated by Ausburger [19]. 

 

 

Figure 8.  Field efficiency as a function of the zenith angle. 

However, the main interest is on the energy collected at the 

receiver, and since 

𝐷𝑁𝐼 ∝  𝑒−sec 𝜃 … (27) 

it means that the DNI drops rapidly with increasing zenith 

angle as the zenith angle approaches 90° since 

lim𝜃→90° sec 𝜃 → ∞ … (28) 



    

As the receiver requires a minimum heat flux to prevent 

solidification of the molten salt, the plant will only start up well 

after sunrise, and shut down again well before sunset [20].  

Hence, correct prediction of the heliostat field optical efficiency 

at large zenith angles is not that critical.  The current model 

with its rather small stencil for blocking and shading 

calculations is surprisingly accurate for its intended purpose 

during normal plant operating hours.  Increasing the stencil and 

additional row towards and away from the tower respectively 

will triple the number of calculations, with insignificant real 

returns. 

The overall optical efficiency of the field is dominated by the 

zenith angle, as shown in figure 8.  Leonardi and D’Aguanno 

[6] and Gauche et al [9] reported similar findings.  There is also 

a secondary effect due to the azimuth angle.  Azimuth angle 

dependence is reported by Leonardi and D’Guanno [6].  The 

data presented in figure 8 is correlated by 

𝜂𝑜𝑝𝑡 = 0.7769 + 0.1377𝜃 − 0.1833𝜃2 − 0.05625𝜃3 … (29) 

with a correlation coefficient of 0.985.  Insignificant 

improvement is obtained with a correlation of the form 

𝜂𝑜𝑝𝑡 = 𝑓(𝜃)𝑔(𝜙) … (30) 

No direct comparison is possible with the work done at the 

National Renewable Energy Laboratory [17], as they predicted 

the annual electric energy produced by the plant.  Adopting a 

thermal efficiency of 40 % for the turbine, and realistic values 

for spillage, convection and radiation losses, the annual electric 

output is over-predicted by approximately 20 % based upon the 

total collected energy.  This can be partly explained by the fact 

that here no provision was made for defocussing heliostats if 

the thermal energy storage should become fully charged during 

the summer months. 

4. Validation 

The poor agreement between the current model and that of 

Gauche et al [9] at large zenith angles prompted further 

validation of the current model.  The shading coefficient 

predicted by the model for a cell 30° north of east, on a mean 

radius of 466 m from the tower was validated against a CAD 

model [21] of one reference heliostat.  The reference heliostat 

was created in the stow position, and then rotated so that its 

face normal 𝑛⃗  corresponds to 

𝑛⃗ =  
𝑆 + 𝑇⃗ 

|𝑆 + 𝑇⃗ |
 … (31) 

 

Figure 9.  Shadow cast by neighbour onto reference heliostat. 

 

The shadows of all six neighbouring heliostats were projected 

along a ray from the sun, and the intercept of these shadows 

onto the reference heliostat calculated.  A comparison was 

made for 18:00 on the summer solstice (Northern Hemisphere), 

as shown in figure 9, a relatively extreme case with the sun low 

above the horizon.  The model predicted a shading efficiency of 

0.752, compared to 0.759 predicted by the CAD model.  Hence, 

it is deemed that the model output is correct, and that the 

deviation form Gauche et al [9] is due to a an inadequate 

shading stencil at large zenith angles, and the dissimilar field 

lay-outs. 

5. Conclusion 

A model is presented to calculate the optical (cosine, blocking 

and shading) efficiency for a radially staggered heliostat field 

based upon a lumped geometric approach.  The annual 

collected energy is available almost instantaneously (about 2 

seconds run-time on an Intel i7 processor with a 32 bit C
++

 

code).  The model was validated against data of Gauche et al 

[9] and Ausburger [16].  It is capable of capturing the main 

physics of the problem, and the results are accurate enough for 

macro decision making.  It is not capable, or accurate enough 

for field design and optimization calculations.  For these 

calculations, the performance of each individual heliostat 

should be considered.  The model under predicts the shading 

effect at large zenith angles.  However, the worst performance 

of this method corresponds with the lowest DNI values, and its 

impact on plant simulations is expected to be minimal. 
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